Flexible Traffic and Host Profiling via DNS Rendezvous

SATIN 2011 April 4, 2011

David Plonka & Paul Barford {plonka,pb}@cs.wisc.edu

Traffic Classification Challenges

Accurate classification is an open problem; timely classification is desirable.

New and evolving applications and protocol reuse

 Increased forwarding speeds and highercapacity links

 Obscured or encrypted traffic, to sidestep service limitations or for user privacy

Prior Classification Work

- Transport-based analysis
 - e.g., FlowScan [Plonka, '00], [Fullmer, et al., '00]
- Payload-based analysis
 - e.g., Snort [Roesch, '99], [Dews, et al., '03]
 - Examine payloads for specific features
- Behavioral analysis
 - e.g., BLINC [Karagiannis, et al., '05]
 - Consider social/functional/transport characteristics
- Statistical/machine-learning-based analysis
 - e.g., [Erman, et al., '06]
 - Apply standard methods to transport features

DNS Rendezvous-based Classification

- rendezvous, meaning "present yourselves"
- Premise: Internet hosts regularly use the DNS to find remote IP addresses of the hosts with which they might interact.
 - It is an *easily separable* "clear text" protocol.

- Hypothesis: We can inform and improve traffic classification by considering,
 - "How does this host know that peer IP address?"

DNS Rendezvous: (1) Query

DNS Rendezvous: (2) Response

DNS Rendezvous: (3) Outbound

DNS Rendezvous: (4) Inbound

Characteristics of Data Sets

Data Set	Date	Day	Duration	Clients	Unique	DNS	Average	Average Wide-Area
					NOERROR	Reply	DNS Reply	Outbound / Inbound
					FQDNs	Pkts	Utilization	Utilization
Office	2009-04-17	Fri	24h	614	19.4 K	560 K	12.2 Kbps	753 Kbps / 5.66 Mbps
Residential	2009-04-17	Fri	24h	9,819		15.7 M	360 Kbps	244 Mbps / 276 Mbps
				(5,344)	(143 K)			

Office Wide-Area Traffic

Residential Wide-Area Traffic

DNS Rendezvous Traffic Analysis: # of IP addrs known via DNS per client (1 day, CDF)

DNS Rendezvous Traffic Analysis: FQDN Popularity by client (1 day)

Residential: Domain Popularity

Target Traffic Classification: Port-based method

Office Target Traffic Classification: "named" and "unnamed"

Residential Target Traffic Classification: "named" and "unnamed"

Residential Target Traffic Classification: "named" by popular domains

Residential Hosts Classification by P2P Host Profile (1 day)

"unnamed" Target Traffic by P2P Profile

Results Summary: Traffic Classified (% bytes)

Data Set	Port-known	DNS-named	DNS-	DNS-named
		and	named	and
		Port-known		DNS-Profiled
Office Out	93.9%	80.5%	81.8%	91.9%
Office In	96.6%	91.8%	93.2%	95.4%
Residential Out	18.6%	6.2%	6.7%	83.5%
Residential In	76.9%	58.3%	67.9%	88.2%

Discussion & Future Work

- In what circumstances can we trust DNS rendezvous information for traffic classification?
- Employ DNS rendezvous-based classification to compare IPv4 and IPv6 service performance.
- Tap rendezvous methods other than the DNS;
 e.g., application-specific methods (WWW, P2P);
 are they separable and clear?
- Should we alter rendezvous protocols to better inform classification and packet treatments?

Flexible Traffic and Host Profiling via DNS Rendezvous

FIN

David Plonka

&

Paul Barford {plonka,pb}@cs.wisc.edu