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Abstract—The ability to accurately classify network traffic and
to perform timely detection of the presence of unwanted classes
of traffic has important implications for network operations
and security. In recent years, classification has become more
challenging due to applications that use ports that are not well-
known, that overload or masquerade with other applications’
well-known ports, and that may encrypt or otherwise obfuscate
their payload. The goal of our work is to develop a method
for traffic classification that is flexible, i.e., that can be used
to create arbitrary organizations of traffic from coarse to fine-
grained groups, and can identify encrypted traffic as well as
new applications. In this paper, we present a novel method for
classification based on analyzingrendezvous traffic(i.e., the traffic
preamble in which a given host determines the remote IP address
of a peer host or service) that usually precedes application
traffic. Our approach exploits the most widely used rendezvous
service, the Domain Name System (DNS). Specifically, through
careful tracking of client IP addresses, alpha-numeric domain
names, and answer IP addresses in rendezvous traffic, we apply
classification labels to end-hosts and their traffic reported by
flow-export data. Additionally, we present the notion of host
profiling as a method for expanding traffic classification in cases
where there is not a direct match between rendezvous traffic
and application traffic. To assess the feasibility of our method,
we perform a focused case study on one day in the lives of
two drastically different user end-host populations: office and
residential. Our results demonstrate the efficacy and capability
of a DNS rendezvous-based method of classification that performs
well even in situations where application payload is encrypted (or
unavailable) or when application traffic is monitored by packet
sampling.

I. I NTRODUCTION

The past decade has seen an explosion of new network
applications such as peer-to-peer (P2P) file sharing, online
social networks, gaming, and VoIP. Each application requires
certain network resources so that users have a satisfactory
experience. The past decade has also seen many forms of
malicious network use and abuse such as denial-of-service
attack bot nets, phishing scams, and thefts due to compromised
host or protocol insecurity. Both the ability to discriminate
between application types in live traffic streams and to identify
suspicious hosts is critical in order to ensure the desired level
of application performance and reliability in an enterprise.

Traffic classification was originally based solely on port
numbers in IP packet headers. When the scope of applications
was almost entirely limited to well-known ports, this approach
was effective for identifying a large proportion of traffic.

However, now there are many applications that operate on
a wide variety of ports, and some ports, such as 80, are
frequently overloaded since they are rarely blocked, which
further complicates classification. This led to development of
statistical classification methods that consider properties ex-
tracted from flow-export data and behavior-based classification
methods that consider host behavior on several levels. Modern
traffic classification methods are challenged to accurately
identify nascent applications on high-performance networks
carrying intentionally obscured or encrypted traffic. While
statistical and prior behavior-based methods can be effective
at placing traffic into coarse-grained groups such as P2P or
WWW, they are limited in their flexibility,i.e., their ability
to accurately assign traffic to arbitrarily specified groups; they
can falter with insufficient knowledge due to practicalities such
as routing asymmetries and packet sampling on high-capacity
links.

In this paper, we describe a new method for traffic classi-
fication that taps a traffic-independent source of information
and enables flexible organization of traffic types into arbitrary
groups. Our classification methodology is based on monitoring
and analysis of the traffic generated by rendezvous services
that are used by Internet applications. A rendezvous service
is typically operated independently of its clients and enables
a client application to identify the IP addresses that are the
target for communication and are known to the user by an
alpha-numeric name. The canonical example of a rendezvous
service is the Domain Name System (DNS), which is used
by most Internet applications. The first step in our method
is to build and maintain a table of active local clients by IP
addresses and their respective target remote IP addresses along
with the associated alpha-numeric names extracted from the
locally-observed DNS traffic.

Next, we search a target database of flow-export records
collected in the same enterprise for local and remote IP
address pairs that match entries in that table populated with
the preceding rendezvous information. If there is a match,
the corresponding alpha-numeric (DNS) name is the basis for
classification.

Both the type of rendezvous mechanism employed (e.g.,
DNS, static, DHCP, algorithmic, etc.) and its intrinsic charac-
teristics offer opportunities for detailed classification at a level
that has not been possible with prior methods. For example, the
simple fact that a given host employed the DNS to rendezvous



with “www.example.com” via HTTP, may allow both that
client host and the exchanged traffic to be classified as WWW
and exclude it’s misclassification as P2P. And, since the DNS
uses names that follow a well-known domain hierarchy, the
DNS name hierarchy can serve as one way to organize and
aggregate resultant traffic, but others are possible as well. For
example, names can be organized into categories that are user
defined, come from a standard source (e.g., [4]), or are based
on application type (e.g.,WWW, FTP, online social networks,
or streaming) or by subject (e.g., weather or sports). This
ability to create arbitrary traffic groups may offer network
operators significant flexibility in how they manage traffic
going well beyond what port-based methods offer.

The key technical challenge in developing a DNS rendez-
vous-based classifier is that it must monitor host rendezvous
traffic and, in a timely fashion, link the information gleaned
with corresponding observations of the application traffic to
be classified. For many an institution or enterprise, the typical
scenario involves a set of client hosts that utilize a locally-
designated recursive DNS service (often located near their
LAN) with those hosts’ application traffic passing through
some interesting observation point within a network element
such as a high-capacity switch or border router. The observa-
tion point of the DNS rendezvous traffic need not be the same
as that of thetarget traffic to be classified. With this model,
we develop a software classifier that can accommodate parallel
traces from multiple observation points.

To assess and evaluate the capabilities and effectiveness
of our method, we collect DNS query-response traffic and
flow-export records from a campus network infrastructure for
over a year. Analysis of this data exposes many interesting
features such as well known diurnal behavior, frequent spikes
in DNS traffic, and a qualitatively different DNS behavior
for subgroups within the user population in a case study we
present that considers traffic for a typical day. We separate
two distinct user populations: a large office/staff group and a
large residential/student group. We characterize and contrast
the DNS and wide-area traffic of each group showing that,
while the general types are similar, the quantity of each type
is dramatically different. In particular, over 90% of the office
traffic is classified by domain name. Less of the residential
traffic can be classified by name, ostensibly due to the use of
P2P and other applications that do not rendezvous based solely
on the DNS. Serendipitously, however, we find that any DNS
rendezvous classification discriminates traditional client-server
application from P2P application traffic.

This work makes the following contributions.(1) We in-
troduce the idea of rendezvous-based traffic classification.
(2) We demonstrate the feasibility and capabilities of DNS
rendezvous-based traffic classification by developing a tool and
analyzing traffic for two diverse populations of users.(3) We
show how DNS rendezvous-based classification complements
and improves upon port-based classification.

II. RELATED WORK

Internet traffic classification methods have been proposed
and evaluated in a number of prior studies. To the best of
our knowledge, none have proposed a DNS rendezvous-based
approach.

Trestian et al. [22] perform traffic classification by first
classifying end-hosts based on results from the Google search
engine. They utilize a database of information that can be
queried publicly on the web, with the hope that it contains
correct and timely information about end-hosts of interest.
The inspiration for their work is similar to ours in that in
order for Internet communication to progress, an end-host
must somehow discover the remote IP address with which to
communicate. Their classification based on matching words in
domain names could be applied to create aggregates for our
DNS rendezvous-based approach.

The recent work by Kimet al. [13] provides a thorough
overview and performance comparison of popular traffic clas-
sification methods and implementations from the literature and
from practice. We utilize their port-based classification in pre-
senting portions of our results. However, our method’s labels
and classes differ, so we report how our classes compliment
theirs. We refer the reader to [13] for a survey of other prior
work involving traffic classification based upon port [16], [1],
payload [20], host-behavior [12], or flow-features [14].

Karagianniset al. [12] introduced BLINC, a classification
method based on host-behavior. Our method is similar to
BLINC in that we do not rely directly on ports nor target
traffic payload and is also similar in that our host classification
employs a kind of “social” profile of each host. However,
our traffic classes are based on innumerable domain names
rather than a small, fixed set of application groups. Also, our
method neither employs heuristics nor requires tuning based
on previously observed behaviors. It has been found [22], [13]
that BLINC’s graphlet approach experiences problems when
the target traffic is sampled (“1 inn” packets) or when the
target traffic is not observed symmetrically at a gateway near
the end-hosts. Thus, BLINC has more stringent requirements
for deployment and operation than our method and so we
use the port-based method to compare and contrast with our
results (Section V). Our technique is robust in the face of
sampling because it gleans social behavior of hosts from
separable, low-volume DNS rendezvous traffic rather than
from the aggregated, high-volume target traffic.

Both Choet al. [9] and Estanet al. [10] describe and im-
plement traffic measurement systems that use the hierarchical
IP address space to profile or classify traffic in aggregates.
Somewhat similarly, our work employs a hierarchy, but instead
uses the hierarchical domain name space to form aggregates
classes; domain names have advantages in terms of readability
and persistence over IP addresses. Additionally, our classifi-
cation groups hosts with similar profiles, and thus bears some
similarity to aggregation in these prior works, but without our
having to rely on structural cues from the hosts’ IP addresses.

Some commercial products perform traffic classification and



filtering using identifiers that often contain domain names.
Products such as Websense [6] and SmartFilter [5] inspect ap-
plication traffic payload for identifiers such as URLs (and may
optionally perform reverse DNS lookups). Our method differs
in that it observes the content of the participating clients’ DNS
rendezvous traffic and thus can be effective in environments
when it is infeasible to inspect the target traffic (e.g., due
to traffic volume, encryption, or policy). Alexa Internet [4]
provides web traffic metrics labeled by domain name, such as
top site lists and demographics. Their service is web-specific
and observes Uniform Resource Locators (URLs), whereas our
work considers all traffic and observes fully-qualified domain
names (FQDNs). However, we advocate the use of Alexa’s
categories as a convenient basis for our operator-defined host
classification.

While we focus on DNS-based rendezvous, prior work has
described alternative rendezvous mechanisms. For example,
Morris et al. propose a distributed hash table-based mech-
anism [15] and Walfishet al. propose replacing DNS with
another mechanism for the World-wide Web in [23]. Baset
and Schrulzrinne [8] and Rossiet al. [19] reverse engineer
and infer Skype’s application-specific rendezvous mechanism.
There are standard rendezvous protocols other than DNS,e.g.,
SIP [11], and P2P variant works in progress (e.g.,P2PSIP [3]).

Finally, there are tools and visualizations that are related to
our work. Wesselset al. [24], [25] provide a tool (dnstop) to
measure DNS traffic by volume per client. Based on that tool,
Plonkaet al. [17] introducedTreeTop, a tool that implements
domain name-based traffic measurement in aggregate. Our
work improves TreeTop to track and report individual client’s
DNS activity and our results differ in that we apply that
DNS information to label both traffic for traditional client-
server applications (e.g., World Wide Web and Streaming)
and peer-to-peer traffic (e.g.,BitTorrent, Skype, and Massively
Multi-player Online Gaming). Shneiderman [21] originated the
treemap visualization that we employ to represent hierarchical
data.

III. E MPIRICAL DATA SETS

In this work we are interested in applying information
gleaned from DNS queries and corresponding replies, ex-
changed between end-hosts and their trusted recursive name
servers within an enterprise, to the task of classifying that
enterprise’s wide-area traffic. To this end, we monitor a
campus’ traffic at two observation points:(1) the campus
clients’ name servers, and(2) one of the campus border routers
that handles much of wide-area traffic including that for the
commodity Internet. We perform full packet capture at the
campus domain name servers, and collect packet-sampled flow
data at the border router.1 Thus, the payload of the DNS
traffic is recorded, but the application traffic payload is not.
Our interest is in the “canonical” DNS traffic,i.e., the standard

1The flow data is based on a 1 in 1024 packet sampling rate using the
“cflowd” feature on a Juniper router with 10-gigabit Ethernet interfaces;
we report all our target traffic volume measurements by bits or bytes
(approximated by multiplying sampled values by 1024).

DNS traffic expected to precede application traffic that consists
of a query by fully-qualified domain name (FQDN) and an
answer containing one or more IP addresses associated with
the query name.

Prior work has shown that traffic classification results can
vary widely based on the trace traffic mix and observation
point [13]. As such, while we monitor traffic for a single
institution, we select two of its end-host/client populations
that have very different characteristics, namely anoffice and
a residential population. To expose the details within the
limited space available here, we present results for a single
representative day. (Classification results from other days are
consistent with the results reported here.)

Table I summarizes the characteristics of the data sets.
We studied, in detail, the traffic on one typical day selected
at random: April 17, 2009. Both the office and residential
data sets consist of(1) all the recursive DNS traffic between
end-hosts and the campus DNS service and(2) the packet-
sampled flow records collected at the campus border that
represent wide-area traffic (see also Figure 4); only flow
records involving campus hosts for which we’ve seen recursive
DNS traffic involving the trusted campus DNS server are
considered.

Data Set Clients Unique DNS DNS Wide-Area
FQDNs Reply Reply Out / In

Pkts Volume Volume
(ave. bps) (ave. bps)

Office 614 19.4 K 560K 12.2K 753K / 5.66M
Residential 9,819 15.7M 360K 244M / 276M
(subpop.) (5,583) (143 K)

TABLE I: Characteristics of 24-hour data sets analyzed. The
average wide-area traffic volume is estimated from packet-
sampled flows. The parenthesized values are for a residential
subpopulation that was used for the TreeTop-based results in
Section V. From the inbound and outbound volume values,
we see that the office population primarily consumes wide-
area Internet content, whereas the residential population both
consumes and provides a significant amount of content.

A. Office Traffic

The “office traffic” involves a group of staff employees
on the campus. The office users are bound by the campus
Appropriate Use Policy for information technology resources
(that tolerates incidental personal use) and their end-hosts are
typically owned by the university and located in campus offices
with wired Ethernet connections. During the course of the day
under study, we observed 614 end-hosts with an average (over
24 hours) of 180 active hosts performing DNS queries per 5
minutes. The office wide-area traffic and DNS traffic volume
and rate values are shown in Tables I.

B. Residential Traffic

The “residential traffic” involves a subset of the students
living in residence halls on a campus. The residential users
are bound by the same Appropriate Use Policy as the office



users, but their end-hosts are privately-owned and located
in private residences that have wired Ethernet connections.
During the course of the day under study, we observed 9,819
end-hosts with an average (over 24 hours) of 1,886 active hosts
performing DNS queries per 5 minutes. The residential wide-
area traffic and DNS traffic volume and rate values are shown
in Tables I.

IV. A NALYSIS METHOD

In this work we analyze and classify the DNS and wide-
area (application) traffic using an improved version of the
TreeTop tool [17]. Specifically, we’ve enhanced TreeTop to
track and report the relationship between IP addresses and
domain names on aper-clientbasis.

In short, TreeTop processes pcap traces of combined DNS
and application traffic, requiring the payload of DNS packets
but only the transport header information of other traffic to
be classified. It observes all DNS replies to each client and,
when there is a successful response (i.e.,NOERROR code) to a
DNS query for an IP address (i.e., type A or AAAA), TreeTop
(a) stores the query name in a centraldomain tree(an n-ary
prefix search tree),(b) stores the IPv4 and/or IPv6 address
answers in a client-specificaddress tree(a binary prefix search
tree), and(c) links nodes in the client’s address tree to their
corresponding nodes in the domain tree. Thus, these data
structures store per-clientDNS rendezvous state information
as to which remote IP addresses are known by domain name.
Subsequently, when TreeTop observes application traffic (e.g.,
the wide-area traffic at a network’s border router), it uses the
rendezvous state information to label the client traffic as either
“unnamed” or as “named,” and accumulates per-client traffic
counters (in bytes or packets) for those meta-categories as well
as for hierarchical sub-categories by domain name.

To prepare the data sets for TreeTop, we synthesize pcap
files from the flow data (with a modified flow-export util-
ity [18], [2]) and merge them with the DNS pcap data (using
mergecap) to form one coherent input data set. Note that, in
general, it is sufficient for the DNS pcap records to be observed
before the application traffic pcap records (from the flow data);
so, for off-line studies, we can perform a single batch analysis
for an entire day using TreeTop by first reading all DNS traffic
data then the application traffic data. By contrast, performing
an online analysis (at one observation point) obviates the need
to carefully interleave the DNS and target traffic records based
on their packet arrival times because the DNS responses are
interspersed in the trace with the target traffic (to be measured)
and would be observed before the subsequent associated target
traffic.

A. Traffic Labels

1) Direct Classes: Direct DNS rendezvous-based traffic
classification involves at least two sorts of traffic classes. The
first, are the “named” and “unnamed” traffic classes, which
simply indicate whether a client end-host knows the traffic’s
remote IP address by a domain name as the result of a canoni-
cal “forward” DNS query to translate that name to an address.

The second and more challenging traffic classes are the
domain names themselves. To deal with the innumerable fully-
qualified-domain-names (FQDNs) that may exist in the world-
wide DNS, we treat them hierarchically. For instance, traffic
involving the FQDN “www.example.com” is in the “com”
class, the “example.com” class, and “www.example.com”
class, and thus can be presented at a number of levels
of granularity. One can imagine categorizing domain names
by common owner (e.g., “facebook.com” and “fbcdn.net”),
similar purpose (e.g., weather or sports content), or even
application groups such as WWW, FTP, Streaming, etc. We
leave such classification by policy or operator objectives for
future work by using readily available references [4].

2) Indirect Classes:Our indirect DNS rendezvous classifi-
cation utilizes host profiles that are defined by configurable
sets of domain names. We defined three such profiles for
P2P clients. The P2P profiles are: “Torrent” (BitTorrent client
applications, directories, and trackers), “Talk” (Skype and
Google Chat applications), and “Game” (Massively Multi-
player Online Games). For instance, a client end-host that
issued a DNS query trailing with “bittorrent.com” or “utor-
rent.com” will be profiled as a “Torrent” client because of its
ostensible interest in a popular BitTorrent client application.
Likewise, a client end-host that issued a DNS query trailing
with “thepiratebay.org” will be profiled as a “Torrent” client
because of its interest in this popular BitTorrent tracker site.
These host profiles then, are used to label traffic classes.
For example, the “Torrent” label would be used for traffic
exchanged by a host having only the “Torrent” client profile;
the “Talk+Game” label would be used for traffic involving a
host having both the “Talk” and “Game” (but not “Torrent”)
profile. Note that we do not claim that “Torrent”-labeled
traffic is necessarily BitTorrent traffic; instead, we claim that
it certainly involves an end-host that matched the Torrent
profile and is thus (at least indirectly) associated with this
P2P application. Each profile is defined by a set of domains
that were assembled from readily available references [7],
[4]. The Torrent domains (31) are popular BitTorrent Clients
from Wikipedia and from Alexa’s top “Torrent Directories and
Tracker Domains.” The Talk domains (2) are from observed
behavior of the Skype application and Google Chat. The Game
domains (35) consist of a well-known online game domain and
Alexa’s top “Massive Multiplayer Online Domains.”

3) Port-based Classes:In addition to our rendezvous-based
labels, we use traditional port-based application labels from an
existing classifier [1] that has been used in prior work. [13]
These are: “WWW,” “P2P,” “FTP,” “Net. oper.,” “Mail/News,”
“Streaming,” “Encryption,” “Games” (distinct from “Game”
which is an indirect host profile-based label), “Chat,” “Login,”
“Tunnels,” “Other,” and “UNKNOWN.” While many services
can be uniquely identified solely by that service’s FQDN,
port-based classes offer the advantage of familiarity and of
distinguishing amongst multiple services that happen to be
identified by a single (unspecific) FQDN.

4) Classification Order:In this study, we take a pragmatic
approach based on flexible classification that emphasizes the



complementary strengths of each method. First, we label the
traffic with the direct DNS rendezvous-based classes (named
and unnamed). Next, for results that involve port-based clas-
sification, we label the traffic using port-based classes, nested
within “named.” Finally, we label unnamed traffic with indirect
labels based on profiling hosts by DNS rendezvous. This
initial choice of order, we argue, is from the least to most
speculative. In the general case, a complementary method,
such as port-based, could be performed at any point; other
orderings provide opportunities to explore how the rendezvous
classes overlap with other classification schemes.

V. RESULTS

In this section we report the results of a “day in the life” of
an office and a residential user population, in terms of their
DNS and wide-area application traffic.

A. DNS Traffic Analysis

Fig. 1: A treemap of domain popularity for all domain names
queried that were answered with IP addresses during one day.
This treemap for the residential population represents 142,594
unique FQDNs. The relative size of the rectangles indicate the
domain names’ relative popularity based on the number of IP
address answers that a client knows as being associated with
that name. The more clients that knew IP addresses associated
with a given domain name, the more prominently it is shown.

Figures 1 is a treemap of domain names based on their
popularity for the residential population. (The treemap for
the office population was visually similar and thus omitted.)
For the day under study, the residential population resolved
roughly 7 times more unique FQDNs than the office popula-
tion (142.6K vs. 19.4K) in DNS queries from about 9 times as
many client end-hosts (5,583 residential vs. 614 office clients).
From values in Table I we can see that there are roughly
32 and 26 unique FQDNs per office and residential client
end-host, respectively, on this day. Many of the most pop-
ular domains are common between the office and residential

populations, including “google.com”, “facebook.com” and the
associated Content Distribution Network (CDN) “fbcdn.net”,
“yahoo.com”, “apple.com”, “microsoft.com” or “msn.com”,
and the local campus’ domain. The least popular domains,
such as those that only a single host might know, are minuscule
in the treemaps, and thus form the light gray fields in the lower
right of the rectangles.

To further explore the popularity of FQDNs amongst these
populations, Figure 2 shows the unique FQDNs known, or-
dered by popularity,i.e., the FQDN numbered 1 on the
horizontal axis is the most popular and that numbered 10
is the tenth most popular within the given user population.
This figure clearly shows that most FQDNs are known by
only a small percentage of the population. Specifically, only
those FQDNs in the top 1000 are known by more than
5% of the hosts. The raw data from TreeTop shows that
more than 68% of the FQDNs were known to only a single
client end-host during this day. This underscores the need to
aggregate the numerous FQDNs in some fashion, and here we
do so hierarchically, beginning with TLDs, then second-level
domains, and so on.
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Unique Fully-Qualified Domain Name Known, Ordered by Popularity (Log Scale)
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Fig. 2: Popularity of FQDNs by client end-hosts during one
day. Here we see that the most popular 10 and 100 FQDNs
are known in common to more than 50% and 10% of clients,
respectively. Note that the popularity ranking for office and
residential populations were determined independently, thus it
is unlikely that they share the same FQDN at a given rank.

We also examined the distribution of clients based on the
number of unique remote IP address answers known by do-
main name to the client. For these data sets, we find that 95%
of the office and residential hosts learned (via DNS answer
replies) of fewer than 1000 unique remote IP addresses by a
domain name, and that more than 99% of all the hosts learned
fewer than 2000 unique remote IP addresses by domain name
throughout the entire course of this day.



B. Traffic Classification Results

Because our DNS domain name-based classification ap-
proach uses drastically different labels than prior classification
work, we do not have a straightforward means of comparing
performance. However, because our direct DNS rendezvous
approach classifies based on domain names and IP address
answers observed in each client’s DNS traffic, it can be
considered tacit ground truth. That is, we are certain that the
client end-host had the opportunity to know the remote IP
address by that name. However, we are guided by finding 1
of Kim et al., [13]:

[The] port-based approach still accurately identifies
most legacy applications [...] this suggests that ports
still possess significant discriminative power in clas-
sifying certain types of traffic.

Our DNS rendezvous-based approach and a port-based ap-
proach are similar in that both of them label traffic based solely
on easily-observed traffic elements, instead of labeling using
heuristics and tunable thresholds.

1) Port-based Classification:We first classify the inbound
and outbound traffic for our two populations using a port-based
approach to set a baseline for comparison. Specifically, traffic
identified by well-know ports is labeled either as one of 12
pre-defined application groups or UNKNOWN.
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Fig. 3: Port-based classification of traffic (bytes) for the office
and residential populations during one day. While 93.9%
(outbound) and 96.6% (inbound) of the office traffic is labeled
(i.e., not UNKNOWN), only 18.6% (outbound) and 76.9%
(inbound) of the residential traffic is labeled due to the
different application traffic mixes. Note the coarse labeling as
only the WWW, Games, and Streaming applications represent
10% or more of the traffic by volume.

Figure 3 shows the classification of traffic using the simple

port-based method.2 Here we see a stark difference between
the office and residential traffic; most of the office traffic is
classified, but much less of the residential traffic is classified.
Furthermore, the application mix differs greatly in these two
populations, with over 80% of the office traffic being labeled
as WWW and only about 5% unknown, whereas less that 10%
of the outbound residential traffic is labeled WWW, and more
than 80% being left unidentified.

2) Direct Rendezvous-based Classification:We now clas-
sify the same office and residential traffic by our direct
DNS rendezvous-based approach using labels as described
in Section IV-A1. We consider two broad rendezvous-based
classes, “named” and “unnamed,” then detailed sub-classes by
domain name.

Figure 4 shows the time series volume for the named
and unnamed portions of the office and residential traffic
throughout the day under study. We see that nearly all office
traffic involves DNS rendezvous and can be named. While a
significant amount of inbound residential traffic can also be
named, 32.1% (inbound) and 93.3% (outbound) is unnamed
and, therefore, apparently does not employ the DNS for
rendezvous. Also, note the correspondence between the portion
of named traffic identified here by our method and that labeled
by the port-based method shown in Figure 3; this suggests
that DNS-named traffic very often uses well-known ports,e.g.,
traditional client-server applications.

While we have omitted the traffic volume detailed by
specific domain names due to space limitations, we repre-
sent these by treemap as in Figure 1, so that the domains
involving the highest traffic volume are largest. For instance,
of the named residential inbound traffic,i.e., from source
IP addresses that the clients know by domain name, the
following are amongst the most significant: “facebook.com”,
“googlevideo.com”, and “edgefcs.net”. The prominence of this
last domain led us to discover that the majority of traffic that
is named by our method yet UNKNOWN to the port-based
method is associated with the “edgefcs.net” domain. This
domain hosts streaming content (presumably on Macromedia
Flash Communication Servers, hence the name “fcs”) atop the
Akamai CDN. These servers deliver content by the proprietary
Real Time Messaging Protocol (RTMP, port 1935) or by
tunneling via HTTP (port 80) and HTTPS (port 443). Thus
informed, we updated the well-known ports database so that
RTMP traffic is properly classified as Streaming in Figure 3.
This example illustrates how the DNS rendezvous-based clas-
sification, by examining the “forward” domain name by which
the clients accessed this service, can assist in nascent protocol
identification leading to an improved port-based method.

3) Host Profiling and Classification Results:We now apply
our indirect DNS rendezvous-based approach, using labels as
described in Section IV-A2.

As shown in Figure 4b, our direct DNS rendezvous-based
classification method determined that only 6.7% of the out-

2Our application group classes are those identified by CoralReef [1],
specifically, coral-3.8.4, and thus are equivalent to those used in the work
of Kim et al. [13].
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Fig. 4: Wide-area traffic rate, as observed at campus border during one day. Outbound rate (from campus) is plotted above
the horizontal axis and the corresponding inbound rate (to campus) is plotted below. Clearly the office population is primarily
a consumer of wide-area Internet content, whereas the residential population is both a significant consumer and provider of
content. The portion of “named” traffic (i.e., by DNS rendezvous) is shaded; while 81.1% (outbound) and 93.2% (inbound) of
the office traffic is named, only 6.7% (outbound) and 67.9% (inbound) of the residential traffic is named.

bound residential traffic was named, and, in Figure 3, we see
the majority of this traffic is UNKNOWN by port. We expect
this unnamed traffic might be dominated by P2P file transfer
(e.g., BitTorrent), game, and/or talk (e.g., VoIP) traffic, i.e.,
those groups of applications that do not typically use the DNS
for rendezvous and also often use unreserved (not well-known)
port numbers.

To classify this traffic, we employ the DNS rendezvous
informationindirectly by labeling local hosts according to P2P
client profiles based on their DNS rendezvous activity. The
resulting assignments are shown in Figure 5.
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Fig. 5: Residential subpopulation host counts by P2P applica-
tion type based on their DNS queries during one day. Here we
see that 1,252 hosts (22.4% of 5,583 total) appear to run one
or more P2P applications. (Parenthesized values are totals for
that subpopulation’s circle.)

Then, in Figure 6, we correspondingly label portions of the
unnamed residential outbound traffic (93.3% unnamed, as seen
in Figure 4b). That is, when traffic is classified as “unnamed,”
we determine if that traffic involved one of the 1,252 P2P

Torrent
(67.1%)
37.8%

Talk
(20.0%)

7.0%

2.6%

4.5%

5.9%
22.2%

Game
(34.9%)

2.3%

Fig. 6: Residential unnamed outbound traffic volume (bytes)
by P2P client profile. Here we see that 67.1% of this unnamed
outbound traffic and involved local hosts that were profiled
as BitTorrent clients based on their DNS rendezvous activ-
ity. (Parenthesized values are totals for that subpopulation’s
circle.)

profiled residential hosts, and if so, we label that portion of
the traffic by the given host’s P2P profile name: “Torrent,”
“Talk,” and/or “Game.” For instance, clients running the Skype
application are known to resolve “ui.skype.com”, thus this is
one of the domain names that causes it to fit the “Talk” P2P
profile. While somewhat speculative, DNS rendezvous profiles
are flexible and configurable; we find that our initial effort
attributes 82.3% of the otherwise unlabeled traffic to the 22.4%
of the hosts that fit a P2P profile, indicating the traffic was
sourced from hosts that had resolved popular Torrent, Talk, or
Game-related DNS domain names.



4) Results Summary:Table II summarizes the overall clas-
sification performance of the port-based method and ours.

Data Set Port-known DNS-named DNS- DNS-named
and named and

Port-known DNS-Profiled

Office Out 93.9% 80.5% 81.8% 91.9%
Office In 96.6% 91.8% 93.2% 95.4%

Residential Out 18.6% 6.2% 6.7% 83.5%
Residential In 76.9% 58.3% 67.9% 88.2%

TABLE II: Traffic classified (bytes) by each method: Port-
known (by the port-based method), DNS-named (DNS ren-
dezvous named), DNS-named and DNS-Profiled (DNS ren-
dezvous named plus unnamed matching a P2P host profile).

The significant proportion of “DNS-named” traffic that also
has “Port-known” for the office traffic (98%) suggests that
one can be somewhat confident in the port-based method there.
The lesser proportion for the residential traffic (86% outbound,
93% inbound) suggests that port-based result is suspect given
that traffic mix. Lastly, for residential outbound traffic, we
realize a 64.9% increase in volume classified by our DNS
rendezvous method over the port-based method.

VI. CONCLUSION

In this paper we present a novel traffic classification method
based on DNS rendezvous,i.e., the domain names by which
end-hosts present and discover IP addresses. Our rendezvous-
based approach combines some of the best characteristics of
prior methods:(i) port numbers are not implicitly trusted,(ii)
deep packet inspection of the target traffic is not required, and
(iii) packet sampling of the target traffic is not an obstacle.
The goal of our work is to add flexibility in classification with
high accuracy of classification in live operational deployments.
This approach gleans information from the most common ren-
dezvous method, the DNS, which is widely used and offers
flexible options to both profile hosts and classify their traffic.

We demonstrate the feasibility and utility of rendezvous-
based classification by implementing our method in the Tree-
Top tool and applying it to DNS traces and flow-export data
gathered from a campus network, focusing on two starkly
different user groups’ traffic for a typical day. We show that a
large proportion of the traffic from the office group is arranged
via the DNS, enabling it to be directly classified by our
method. In the residential group, where a significant amount of
traffic is not is preceded by DNS queries, we implement two
alternatives:(i) we apply the port-based method selectively, to
just the named traffic, to minimize that method’s false reports,
and (ii) we infer labels for unnamed traffic by profiling the
end-hosts involved, based on their DNS activity. These initial
results demonstrate how a traffic classifier can make effective
use of a hitherto untapped, independent source of information,
i.e., the Domain Name System.
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