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Traffic Anomaly Detection at Fine Time Scales with
Bayes Nets

Jeff Kline, Sangnam Nam, Paul Barford, David Plonka, and Amos Ron

Abstract—Traffic anomaly detection using high performance
measurement systems offers the possibility of improving the
speed of detection and enabling detection of important, short-
lived anomalies. In this paper we investigate the problem of
detecting anomalies using traffic measurements with fine-grained
timestamps. We develop a new detection algorithm (called S3)
that utilizes a Bayes Net to efficiently consider multiple input
signals and to explicitly define what is considered “anomalous”.
The input signals considered by S3 are traffic volumes and
correlations between ingress/egress packet and bit rates. These
complementary signals enable identification of an expanded range
of anomalies. Using a set of high precision traffic measurements
collected at our campus border router over a 10 month period
and an annotated anomaly log supplied by our network oper-
ators, we show that S3 is highly accurate, identifying 86% of
the anomalies listed in the log. Compared with well known time
series-based and wavelet-based detectors, this represents over a
20% improvement in accuracy. Investigation of events identified
by S3 that did not appear in the operator log indicate many
are, in fact, true positives. Deployment of S3 in an operational
environment supports this by showingzero false positivesduring
initial tests.

I. I NTRODUCTION

Whether malicious or unintentional, traffic anomalies are a
fact of life in wide area networks. At a high level, the impact
of anomalies is to reduce network performance and reliability,
and as such, they are the bane of network operators. The
standard process for addressing network anomalies isdetect
- diagnose - remedy. Therefore, improving any part of this
process should improve network performance and reliability.

The general objective of our work is to improve the ability
to detectnetwork traffic anomalies in operational networks.
While a wide variety of both ad hoc and automated methods
for detecting anomalies are currently used, two of the most
important requirements for detection areaccuracyand timeli-
ness. An accurate detection method raises an alert if and only if
an anomalous event occurs in the network. Likewise, a timely
detection method raises an alert soon after an anomalous event
begins.

There are many challenges to accurate and timely anomaly
detection. First, anomalies are difficult to define. While at-
tacks, outages, flash crowds and misconfigurations are ex-
amples of anomalies writ large, specifics vary from network
to network depending on operational policy. Second, non-
anomalous traffic has complex characteristics. The inherent
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burstiness, and diverse and evolving composition of network
traffic render some simple volume-based detection methods
ineffective. Third, the ability to detect anomalies is intrinsi-
cally tied to the measurements that are available in a network.
In general, these include SNMP MIB and flow-export data
(such as Cisco’s NetFlow) that are typically only collected
at intervals of minutes which inherently limits the capability
of any detection algorithm both in terms of accuracy and
timeliness.

In this paper we address the problem of detecting anomalies
accurately using time series traffic measurements collected us-
ing high performance monitors. We restrict ourselves initially
to volume measurements because of their proven utility in
prior work and the fact that they do not necessitate packet
header or payload inspection. We argue that these measure-
ments offer the possibility of detecting important short-lived
anomalies, detecting anomalies in near real time, and exposing
details of anomalies that could be used for classification. Our
specific objectives are to develop an anomaly detection method
that can consider multiple dimensions of high precision traffic
measurements, which we hypothesize will lead to high detec-
tion rates, and to do this in a computationally tractable manner
that can be used in operational environments.

The new anomaly detection methodology that we describe in
this paper uses four time series with high precision timestamps
(ingress/egress packet and bit rates). The first component of
the detector uses a wavelet-based method to identify significant
changes in volume of ingress and egress packet counts (what
we refer to assmoothness). The second component of the
detector is based on the premise that “normal” ingress and
egress traffic exhibits a characteristic correlation structure.
The central notion of this “normal” assumption is that the
ingress and egress bit counts can be approximately recovered,
in a time-stationary way, from the ingress and egress packet
counts. We refer to this assumption astraffic symmetrywhich
expands on the idea ofpacket symmetrythat has been shown
to be effective for DoS detection in prior studies [1], [2]. We
then identify anomalous traffic by measuring the “distance”
of the observed traffic from the normal one. We use certain
parameters of a singular value decomposition of ingress and
egress bit and packet counts as a means for measuring that
distance. The use of two suchcompletely complementary
methods (smoothness and symmetry) enables our detector to
capture a range of anomalous behavior beyond what either
method in isolation could detect. The third component of the
detector combines the first two to generate alerts using a Bayes
Network, which is computationally efficient and enables what
is “anomalous” to be defined explicitly and in a principled
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fashion. Since this algorithm is based on traffic Symmetry,
Singular value decomposition and Smoothness, we call it the
S3detector.

To assess the capabilities of S3, we observed traffic over
a period of 10 months on the commodity traffic link of
our campus border router using an Endace DAG packet
monitor [3]. We created the four input time series at one
second granularity in near real time. A journal of traffic
anomalies was painstakingly created over this period by our
network operations group using coarse-grained SNMP and
flow-export data. The journal contains details of 94 confirmed
and diagnosed traffic anomalies. While this set of anomalies
is assumed to be incomplete (due to the limitations of the
coarse-grained data and operator attention), it nevertheless
represents a standard for ground truth in false negative analysis
of anomaly detectors.

Toward our objective of using the S3 detector in an op-
erational context, we implemented it to test for anomalies
over 15-minute windows at one minute steps (i.e., fixing the
minimum reaction time for detection at one minute). The fact
that all components of the detector have low computational
complexity enables the detector to function quite efficiently
at this time scale. Our S3 detector identified 86% of the
logged anomalies and 345 (average of 1.3/day) additional
events. Manual inspection of many of the additional events
reveals that nearly all are, in fact,true positivesthat were
not visible to the operators who created the anomaly log
with coarse-grained data. We believe that the rigor of the
Bayes approach, its natural mechanism for specifying what is
“anomalous”, and its tunability offer a significant opportunity
to both improve detection rate and lower false alert rate in
operational deployments.

To further evaluate the S3 method, we implemented a
standard Holt-Winters time series detector (HW) similar to [4]
and a Deviation Score wavelet-based detector (DS) similar
to [5], which was shown to perform very well in [6]. Both
of these detectors identify “significant” fluctuations in volume
of a single signal. After extensive manual tuning of HW and
DS detectors for the fine time scale data, we were able to
achieve a 65% detect rate with 443 additional events (average
of 1.7/day) identified by HW, and a 63% detect rate with 588
additional events (average of 2.2/day) identified by DS. The
20% improvement by S3 over these prior methods (at similar,
manageable additional alert rates) is thus significant and sup-
ports our hypothesis that considering multiple complementary
characteristics of input signals leads to improved detection
accuracy.

The final step in our investigation of S3’s capabilities is
an initial case study in which we asked a network operator
to inspect all of the alerts generated by S3 over a one week
period. During this time, S3 identified 8 anomaly episodes.
The network operator investigated and diagnosed these and
determined thatall alerts were true positives. This result lends
important additional support to the utility of our approach.

In summary, this paper makes the following contributions:
(i) an initial examination of anomaly features that are exposed
at fine time scales,(ii) introduction of a new anomaly detection
method based on multiple complementary signals and a Bayes

Network that is both accurate and timely, and offers opportu-
nities for site specific tuning and continued refinement, and
(iii) evaluation of the new method along with two standard
methods for anomaly detection in traffic over a long duration
with an operator supplied anomaly log.

II. RELATED WORK

Network anomaly detection has been an active area of
research for some time. Early efforts were focused on the
practical problem of network fault detection [7], [8], and in
using time series methods to detect traffic anomalies [9], [4].
Several studies have shown that entropy-based methods can be
effective for anomaly detection [10], [11] including Xuet al.
who use entropy to classify traffic in packet traces taken from
an ISP backbone [12]. These information entropy methods rely
on packet header information and thus require more processing
per packet and more maintenance of state information than
our method based on traffic rate inputs. (Our method does not
preclude the use of packet content; it could provide additional
time series input signals.) Bayesian Networks have been used
to detect anomalies at the TCP connection level (e.g., [13],
[14]). Our work differs in that it employs Bayes Networks
trained for normalcy using characteristics of aggregate traffic;
we were unable to find prior examples of this application in
the context of network traffic anomaly detection.

More recent work by Barfordet al. explores the use of
wavelets as the basis for detecting anomalies in NetFlow
data [5]. The smoothing function used in our detector is
similar to the mid frequency filter developed in that work.
That study also used an annotated anomaly log as the basis
for testing their detector. Lakinaet al. pioneered the use of
SNMP and NetFlow data sets from multiple sites and Principle
Components Analysis (PCA) as the basis fornetwork-wide
anomaly detection [15], [16], [17]. Recent work by Ring-
berg et al. provides important insights on the difficulties in
tuning network-wide PCA-based detectors in practice [18].
Two additional studies that describe promising methods for
network-wide anomaly detection include [6], [19]. Our detec-
tion method could easily be adapted for use in a network-wide
detection framework such as [6]. Finally, a recent reference to
singular value decomposition in the context of traffic anomaly
detection appeared in [20]. The basic formulation of the
anomaly detection method described in that work-in-progress
differs substantially from ours.

There is a large literature on the characteristics of network
packet and flow traffic. Several more recent studies have inves-
tigated correlations between size, duration, rate and burstiness
in traffic flows [21], [22]. There have also been many studies
of network traffic based on packet traces collected with high
performance monitors similar to those used in our study (e.g.,
see [23]). However, we are not aware of any study that has
systematically examined correlation structures between ingress
and egress traffic on a link, which is an important component
of our anomaly detector.

The idea of using packet symmetry for the purpose of denial
of service attack detection was introduced by Mirkovicet al.
in [1]. That work identifies malicious activity if the smoothed
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ratio of packets sent to packets received exceeds a simple
threshold on a per flow basis. Kreibichet al.expand the idea of
packet symmetry by proposing that it be adopted as a principle
of protocol design [2].

III. D ATA COLLECTION

Our study is motivated in part by the simple fact that the
process of anomaly detection is inherently limited both in
accuracy and timeliness by the precision of the measurement
system used to gather data. Since SNMP and flow-export
measurements are typically only available at one to five minute
intervals, events that take place on shorter time scales are
unlikely to be visible in this data.1

We hypothesized that there are important anomalous traffic
events that are discernible only with fine time scale data,
and that this data exposes key features of events that could
be useful for diagnosis and remedy. Furthermore, time series
detection methods that are based on temporal aggregation are
directly tied to the number of data points that are available
for evaluation. For example, the wavelet-based deviation score
method described in [5] is limited significantly by the fact
that only 288 data points are available each day from data
provided at five minute intervals. Measurements at a finer time
scale should clearly improve timeliness, but should also have
the potential to improve accuracy in aggregate-based detection
methods.

A. Instrumentation

The fine time scale data used for this study was collected
using a dedicated monitoring machine running Linux 2.4 with
an Endace DAG4.3GE network monitoring card, dual Intel
Xeon processors, and multiple SCSI disks. The monitoring
card was connected to an optical tap on a link from one of
our campus border routers to our primary Internet service
provider. This link carries most of the campus’ commodity
Internet traffic. We used DAG driver software version 2.5.3
release 1 and a patched version of NeTraMet [24] software,
version 5.1 beta 9 (NeTraMet51b9) to extract bit/packet time
series. A patched version of RRDtool [25] version 1.2.12 was
used to store the time series data.

NeTraMet was configured with a rule set that stored ingress
and egress packet and bit rate values once every second.
We experimented with different aggregates and found that
one second increments resulted in a manageable volume of
data with extremely rich features as will be shown below.
The one second rate values from NeTraMet were continually
downloaded from the DAG monitor via SNMP (on fifteen
second intervals), post-processed and pushed into a round-
robin-database (rrd) file. Once in the database, these rate
“signals” could be accessed by our detectors.

B. Measurement Data

Our measurement infrastructure was used to collect data
almost continuously between April 17, 2005 and January 22,
2006. The raw data was stored in an rrd file configured with a

1For a specific example, see the anomaly in Figure 1.

Round-Robin Archive (RRA) large enough to hold one year’s
worth of ingress and egress packet and bit rates: four floating
point values per second. The average ingress and egress packet
rates were 31K and 32K packets per second, respectively. The
average ingress and egress bit rates were 139M and 189M bits
per second, respectively. The only significant discontinuity in
the data is a measure outage period of two weeks in May and
June 2005, during which our measurements are missing.

Similar to [5], a journal of actual traffic anomalies that oc-
curred in our network was meticulously maintained during the
measurement data collection period. The entries in this journal
were the “major” anomalies identified during this period and in
each case were carefully diagnosed by the network operations
staff. The sources used to identify the anomalies were five-
minute granularity SNMP and flow-export data visualized
by MRTG [26] and FlowScan [27], respectively. Although
this limits an operator’s ability to to distinguish very short-
lived events (thus the log cannot be used for false positive
analysis), this set of events isground truthfor evaluating the
performance of our anomaly detection method and comparing
it with other detectors. This stands in contrast to evaluation
methods used in prior work such as relying on other anomaly
detectors to identify candidate events (e.g.,[15]) or relying on
injected artificial anomalies into traces (e.g., [28]).

Each entry in the anomaly log notes the event’s date and
time, a short description of the anomaly’s root cause, and
sometimes an end time. This enabled us to group the events
into the following categories:

• Abuse: Typically a Denial-of-Service event, usually
flood-based. For instance: an outbound flood of UDP
packets from a campus host that has had its security
compromised and is being remotely controlled by a
malicious party.

• Flash: A flash crowd event. For instance: hundreds of
clients outside our campus receiving a live video stream
of a sporting event sourced from a server on campus.

• Measurement: An anomaly due to legitimate traffic or
measurement system failures. For example: a campus host
participating in TCP bulk data transfer with a host at
another campus as part of a research project.

• Network: A network failure event or temporary miscon-
figuration resulting in a connectivity problem or outage.
For instance: a scheduled code upgrade on our service
provider’s router.

• Unknown: An anomaly for which evidence was found,
but the root cause was not identified.

Engineers operating the campus network identified, re-
searched, and tagged events resulting in a log of 94 confirmed
anomalies suitable for evaluating our detection method.2 This
journal served as a road map to points of interest in the traffic
rate database, and enabled us to build a query engine to select
from this data.

C. Sample Anomalies

The time series data collected in this study offers an unusual
perspective even for experienced network operators since most

2The distribution and counts of these anomalies are shown in Section V.
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Fig. 1. Example of a rapid probe of an entire class B network. This anomaly
is invisible in 5 minute aggregate data. 48 hour perspective at 5 minute
granularity (top), 10 minute perspective at one second granularity. (bottom).

networking equipment is not capable of exposing traffic rates
in so timely or granular a fashion. We present three examples
of events that highlight the level of detail afforded by the fine
time scale data and motivate our use of traffic rate measure-
ments as a basis for automated anomaly detection. While each
of these sample anomalies exhibit a dramatic change from
normal in packet rates and some ingress versus egress packet
asymmetry, many other unique characteristics become visible
at the finer time scale. These additional features may well serve
as a basis for improving detection, or anomaly classification
in future work.

Figure 1 shows the inbound and outbound packet rates when
a host in the outside world sent a single 46 byte packet to the
TCP port 512 (the “exec” service) of each IP address in one of
our campus’ class B networks. Presumably this was to elicit
a response in preparation to attempt to compromise campus
hosts’ security and is therefore likely malicious abuse of the
network. The top graph shows the inbound and outbound rates
as five minute averages (typical for SNMP or flow-export data)
over 48 hours; the probe traffic is not discernible. The lower
graph shows the rate in one second averages over 10 minutes;
the spike representing that abusive probe traffic is prominent.
This event exemplifies the ability of fine time scale data to
expose short-lived events of interest.

Figure 2 shows the inbound and outbound packet rates when
three hosts in the outside world sent a flood of UDP packets
destined for ports 21 and 80 of one campus host. The top
graph shows the rates as five minute averages over 48 hours;
an increasingly large spike in inbound traffic is clearly evident.
The lower graph shows the rate in one second averages over 2
hours; a series of irregularly-sized steps is present, suggesting
that each of the source hosts began flooding at a different
time, that all three flooded simultaneously, and that the second
host was the last to cease flooding. This kind of coordinated
behavior is suggestive of botnet activity (e.g., [29], albeit at
a small scale) and the detail provided by fine time scale data
could be useful in the diagnosis process.

Figure 3 shows the inbound and outbound packet rates

Fig. 2. Example of a progressively more intense UDP flood anomaly
from three hosts: 48 hour perspective at 5 minute granularity (top), 2 hour
perspective at one second granularity (bottom).

Fig. 3. Example of a network anomaly due to routine maintenance : 48 hour
perspective at 5 minute granularity (top), 20 minute perspective at one second
granularity (bottom).

during a scheduled network maintenance outage. The top
graph shows the rates as five minute averages over 48 hours;
a drop to zero is clearly evident in the mid-point of the graph.
(The earlier inbound spike is an unrelated anomaly.) The lower
graph shows the rate in one second averages over 20 minutes;
a gradual return of the traffic is evident. Unlike the prior
examples, this event is strongly symmetric with respect to
packet rates. This highlights a challenge for a detector based
only on identifying asymmetric changes in traffic.

IV. BUILDING A DETECTOR

Our process for building an anomaly detector has two steps.
The first is identifying the set of signals whose behavior
can be correlated with anomalous traffic. This step can be
decomposed into(i) identifying a time series that can be ex-
tracted from the high performance monitors, and(ii) applying
a transformation to this time series that enhances the signal
to noise ratio. The second step in the process is to develop a
detector that is applied to the signal set to identify anomalies
by distinguishing “abnormal” from “normal”.

The model for our anomaly detector is based on considering
multiple complementary input signals as a means for improv-
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ing accuracy. Our first observation is that analysis of individual
time series (e.g.,ingress packet rate) can be quite effective for
identifying anomalous spikes in traffic streams that arise for
a variety of reasons such as large scale attacks and network
outages. Our second observation is that there are inherent
correlations between normal ingress and egress traffic from a
network due to the network’s population of consumers (which
pull data into the network) and providers (which push data
out of the network), bidirectional applications, and reliable
transport protocols. We refer to this relationship astraffic
symmetrywhich could include aggregate packet, byte, or flow
rates or more detailed breakdowns of traffic afforded by full
packet traces. Traffic symmetry is a strong and persistent
characteristic in our data. We posit that important classes of
anomalous events such as changes in the dominant application
or even subtle adjustments in the application mix may not be
evident in volume measures but will be reflected in detectable
changes in traffic symmetry. While traffic symmetry may not
be as useful for exposing anomalies one.g.,core routing paths,
we expect that segments that form gateways between networks
will be good candidates for taking advantage of this important
property.

A. From Measurements to Signals

The measurements we considered in this work –
ingress/egress bit and packet count time series – are straight-
forward to produce by passive measurement and it is well
known that changes in these streams can correlate with impor-
tant types of anomalies. While many other time series from
packet monitors may be useful for detecting traffic anomalies,
we leave the analysis of these to future work. It is important to
note that our detector framework described below can easily
be expanded to include additional time series. Our task was
to develop transformation methods for basic data streams that
lead to accurate identification of anomalies.

1) First component: smoothness estimator:This compo-
nent examines each of the ingress/egress packet count time se-
ries, and actually measures thelack of smoothness(i.e., related
to variance) in the data. This is a standard procedure: first, the
time series is decomposed into a hierarchy ofdetail coefficients
(via a wavelet decomposition), and organized according to
time scale. Then the rate of decay of these coefficients as
we move from the largest time scale to the smaller scales is
estimated. The higher the decay, the higher the smoothness.
The working assumption is that certain anomalies increase the
volatility of the traffic volume, thereby reducing the smooth-
ness parameter. We are particularly interested in periods when
the smoothness decreases simultaneously for the incoming
as well as outgoing packet counts. Symmetric decrease of
smoothness may be indicative of irregular behavior that may
not radically distort symmetries in the data volumes (e.g.,
Figure 3), hence these events may not be identified by the
second component of the detector, described below.

The calculation of the smoothness estimator takes place
over a specified time interval. While we experimented with
several possible values, a 15 minute interval was selected for
our implementation. Within a given interval, we extract the

ingress and egress packet count at 1 second sample rates over
the interval[T,T +899]. While we could get the smoothness
readings themselves at 1 second granularity (by shifting the
15-minute window 1 second at a time), we observed that
readings at 1-minute steps captures accurately the variability
of smoothness, whenever it occurs.

Each time series is then decomposed into a hierarchy of
detail coefficients using a wavelet system. (The Daubechies
6-tap wavelet system [30] was chosen for our analysis.) Next,
we compute the norms of the detail coefficients by taking the
square root of the squared sum of the coefficients and obtain a
sequence of norms corresponding to the wavelet hierarchy. The
smoothness estimation of each time series is then computed
by taking a weighted sum of these norms with larger weights
applied to the norms of the smaller time scale coefficients.
This is a discrete version of the Sobolev norm. The result is
a nonnegative real number that can be arbitrarily large.

Specifically, for fixed waveletψ := ψDaub,6−tap, we used the
following as our definition of the Sobelov norm:

‖ f‖Ws :=

(
∑
k,m

(
1+2−2sk

)∣∣〈 f ,ψk,m〉
∣∣2)1/2

whereψk,m : x 7→ 2−k/2ψ(2−kx−m). For our analysis, we set
s := 1/2.

2) Second component: correlation estimator:In contrast
to the first component which is obtained by “averaging local
behavior”, this component is genuinely global. The first step
in correlation analysis is to choose a time interval for the
analysis. Like the smoothness estimator, we experimented with
different intervals, and found that a 15 minute period works
quite well. We normalize the volume readings in a given
window and obtain four vectors:IP (Inbound/ingress Packet
rate),OP (Outbound/egress Packet rate),IB (Inbound/ingress
Bit rate),OB (Outbound/egress Bit rate). Each vector has 900
entries (900 seconds = 15 minutes). For example,IP(i) records
the ratio between the number of incoming packets that arrived
during theith second and total number of incoming packets,
but normalized with thè 2-norm. That is, ifv(i) records the
number of packets that arrived at theith second then:

IP(i) =
v(i)√

∑900
j=1v( j)2

.

A thorough assessment of these values for our data shows
that the above four vectors are strongly correlated. This is
due to the fact that the large majority of the measured
data corresponds to normal bidirectional application traffic.
It is reasonable to assume that relations similar to those we
observed will be found in data collected at other locations in
the Internet (gateway links in particular).

A prominent characteristic of our data is that the four
normalized vectors are well-approximated by a 2-dimensional
plane. This characteristic is observable over a wide range
of time scales, times of day and volumes in traffic. While
this 2-dimensional approximability phenomenon may seem
surprising at first, a closer examination of prevailing network
characteristics show this phenomenon to be the case under
the following realistic assumptions. The first assumption is
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that packet count and byte count are dominated, in non-
anomalous periods, by large TCP-based flows (so called ele-
phant flows [22]). The second assumption is that the outgoing
TCP traffic during a short period of time (e.g., 15 minutes)
is homogeneous, i.e.,tends to exhibit an almost constant
ratio between the number of outgoing data packets and the
number of incoming acknowledgment packets. Let us denote
that near-constant ratio byR1. A similar assumption is made
for the incoming TCP traffic, but quite likely with a different
ratio R2 (i.e., we allow the data flow in one direction to
have different characteristics as compared to the data flow in
the opposite direction). Finally, we assume that the average
size of a packet (along the measured period,i.e., typically
15 minutes) depends on the direction (ingress/egress), and
whether the packet contains data or is a ACK with no payload,
but is largely independent of other factors. These combined
assumptions yield that, with the vectors of incoming packets
V, and the vectors of outgoing packetsW, we observe on the
ingress link a vector similar to

V +R2 ·W,

and on the egress link

R1 ·V +W.

Moreover, the corresponding byte-count vectors are

A·V +B·R2 ·W,

and
C ·R1 ·V +D ·W,

for suitable constantsA,B,C,D. All these four vectors lie in
span(V,W). Thus, under the realistic assumptions stated above,
the four collected time series, during non-anomalous periods,
lie in a two dimensional plane. The normalization process
that we apply to each vector does not change this important
property. At the same time, one has good reason to expect that
anomalous traffic (e.g.,DoS attacks) will be very different in
its characteristics, and hence will distort the aforementioned
dependencies among the four collected time series.

To test the symmetry assumption on four vectorsIP, OP,
IB, OB, we used first the singular value decomposition (SVD)
to compute a suitable approximating 2D plane. Lete1 and
e2 be the two singular eigenvectors that span this plane. Our
analysis is based on the eight inner products between each
of the vectorsIP, OP, IB, OB on the one hand, and the two
eigenvectorse1,e2 on the other hand.

We now describe our hypothesis concerning the output
of the above analysis under “ideally normal” traffic condi-
tions. Our first assumption of ideal normal traffic is that the
eigenspace plane is spanned byIP and OP (and not only by
their projections), and that the eigenvectorse1,e2 are chosen
based onIP and OP alone (without involvingIB and OB).
This assumption is reasonable since the common applications
create high correlation betweenIP and OP, far higher than
any correlation that might be expected betweenIB and OB.
This assumption was also validated extensively in our own
data. Under those ideal conditions we must then have:

IP = a1e1 +a2e2, OP= a1e1−a2e2,

for some scalarsa1,a2 that satisfya2
1 +a2

2 = 1. In reality, we
only have:

P(IP) = a11e1 +a12e2, P(OP) = a21e1−a22e2,

with P the orthogonal projection on the 2D eigenspace, and
with:

D1 := a11a21+a12a22 < 1.

Our first assessment of “distortion from normalcy” is based
on the value of 1−D1. A large value here corresponds to a
higher degree of violation of our normalcy assumption.

Our second hypothesis of normal behavior is that the vectors
IB and OB are uncorrelated, and they both completely lie in
the eigenspace plane. In reality, it is only true that:

P(IB) = b11e1 +b12e2, P(OB) = b21e1 +b22e2,

with bi j the inner products between the vectorsIB, OB and
the eigenvectorse1,e2. Had our hypothesis been true, the
Gram matrix (bi j ) would have been unitary, and hence its
determinant (in absolute value) must have been equal to 1.
Our second measure of normalcy is based on this determinant:

D2 := |b11b22−b12b21|

The difference 1−D2 provides us with a second measurement
of “distortion from normalcy”.

We noted earlier that our two estimators are based on
complementary methodologies: one looks for local distortions
along each time series, while the other looks for global
inconsistencies among the entire collection of time series. As
a matter of fact, the complementarity of the two methods
is even more fundamental than the above description may
indicate. The smoothness of each time series is governed
primarily by the initiation and termination of short-lived flows,
as well as by flows that behave erratically. Most of the data
volume does not belong to these flows, and is filtered out by
the wavelet tool. Large values from the smoothness estimator
is an indication of unusualincreasein erratic behavior, (or
in the initiation/termination rate) of short lived flows. Our
assumption is that an “anomaly” creates spontaneous erratic
behavior, and at the same time distorts the model of elephant’s
dominance. Thus, we actually estimate two properties that are
somewhat similar, but by completely disjoint analytical tools.

B. Bayes Net Detection

We implemented a detection method that uses the smooth-
ness and symmetry estimates as input to a Bayes Network [31].
The Bayes Net method offers a systematic means for estab-
lishing differences between normal and anomalous behavior
with multiple input signals. Bayesian Networks are a general-
purpose tool used to infer causal relationships between mul-
tiple random variables. More specifically, they are graphical
models which use directed acyclic graphs to compactly rep-
resent joint probability distributions. Each random variable
represents a node on a graph; directed edges indicate that a
dependence exists between a pair of nodes.

Our data is a six-dimensional time series: two correlation
values and four smoothness values for each point in time. To
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infer the relationships between these values and their baseline
behavior, a training set of observations is required.

Special care is necessary when establishing baseline behav-
ior. Traffic observed at noon on a typical weekday cannot be
used to characterize traffic measured during early morning
hours on that same weekday. Similarly, times during the
weekend may not be fairly used as a baseline for traffic during
weekdays. Finally, vacation days also exhibit behavior that
does not mimic typical weekdays. For a university setting, this
means distinguishing between summer and semester week-
days.

Although we collected data continuously, we only included
the semester weekday data when training and testing our
Bayes Net detector. Each weekday was divided into sixteen
disjoint 90-minute periods. This partitioning attempts to limit
the effects of standard diurnal cycles in network traffic.

We used the the MATLAB Bayes Net Toolbox for this
portion of S3. To create a Bayes network of a size that
would be suitable for an operational deployment, we encoded
the smoothness and correlation signals as integer values. The
smoothness signal was reduced to a boolean value while the
correlation signals were encoded as integers ranging from 1
to 4. Specifically, for each 90 minute period in a day, the
5th and 95th percentiles of the smoothness estimators were
found and saved. Values below the 5th percentile or above
the 95th percentile are considered “in the tails” and therefore
candidates as anomalies. These values were then assigned a
boolean identifier indicating whether or not they occurred in
the tails. The correlation estimators were organized into 1 of
the following 4 categories: [0, 0.7), [0.7 0.8), [0.8, 0.92) and
[0.92, 1].

Weekdays of the entire 10 month data were thusly parti-
tioned and encoded. The encoded data were used to estimate
the six dimensional (empirical) joint distribution for each
of the 90 minute periods. “Normal” behavior is therefore
assumed to be the dominant characteristic in the encoded
data. Conversely, “anomalous” behavior is assumed to have
occurred infrequently, although we do not distinguish this in
the training data so it is also encoded in the joint distribution.
The key point here is thatthe joint distribution captures and
quantifies normalcy.

To identify an anomaly, we proceed as follows. Given a
current observation, we compare the frequency of occurrence
of similar events in the past. Whenever such events occurred
sufficiently infrequently (this is reflected as a tiny value
in the joint distribution), the alarm is raised. To set this
alarm threshold, a collection of 20 candidate events from the
operators log of varying magnitude, duration and type were
selected. A threshold of 1e-4 was sufficient to identify all of
the candidate events while remaining minimally sensitive.

Selection of the values 0.7, 0.8, and 0.92 used for encoding
the correlation values was based on the observation that the
candidate anomalies we wished to identify assumed values
within each of these ranges. The 5th and 95th percentiles used
for encoding the smoothness data were fixed without respect
to the canonical anomalies.

The time interval/window size and the number of wavelet
levels are closely related to each other. This pair of parameters

TABLE I
S3 BAYES NET DETECTOR PARAMETER LIST AND SETTINGS USED IN THIS

STUDY.

Parameter Parameter
Description Value

Window Size 900 seconds
Wavelet Levels 8 levels
Window Shift 60 seconds

Day Partition Size 90 minutes
Smoothness Partitions 0.05 and 0.95 percentiles
Correlation Partitions 0.7, 0.8 and 0.92
Detector Threshold 1e-4

TABLE II
EVALUATION RESULTS: COUNT OF CANDIDATE ANOMALIES DETECTED

BY THE HOLT-WINTERS, DEVIATION SCORE, AND S3 METHODS.

Anomaly Candidate HW DS S3 Bayes
Type Count Detected Detected Detected

Abuse 76 54 (71%) 54 (71%) 71 (93%)
Flash 2 1 (50%) 0 (0%) 0 (0%)

Measurement 8 4 (50%) 4 (50%) 4 (50%)
Network 4 2 (50%) 1 (25%) 4 (100%)
Unknown 4 0 (0%) 0 (0%) 2 (50%)

Total 94 61 (65%) 59 (63%) 81 (86%)

serves to influence the S3 detector’s sensitivity to short-lived
events. Shorter windows increase the sensitivity. The number
of available wavelet levels is limited by the size of the time
window. We usually set the number of wavelet levels to be
approximately log2(WindowSize). The size of the window
shift determines the granularity of the analysis. A shift that is
smaller than the size of the time window provides redundancy
in the analyzed data. For example, a window of 15 minutes
coupled with a shift of 1 minute means that every point in
time is examined 15 times.

A list of the parameters used in the S3 Bayes Net detector
evaluation is given in Table I. We plan to investigate automated
methods for tuning the detector in future work.

V. DETECTOREVALUATION

We evaluated S3’s performance and compare its capabilities
relative to two other anomaly detection techniques. To do
this we had to first build and then tune these other detectors
to operate on fine time scale data. Tuning is a fact of life
for all statistical anomaly detectors. Our objective in tuning
the detectors used in this study was to identify as many of
the ground truth anomalies from the operator’s journal as
possible without an explosion in the number of additional
events detected. Our aim in terms of the latter was to keep
the average number of additional events detected on the order
of 1 to 2 per day over the 266 day data set. We emphasize that
it is unreasonable to call all of the additional events detected
by any of the methods “false” positives since through manual
analysis, we found that in many cases the events are true short-
lived anomalies that were simply not visible in the operators’
coarse-grained time series plots of SNMP or flow-export data.

A. Methodology

To evaluate each anomaly detector’s performance, we
matched the anomalies they reported with anomalies in the
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operator’s log. To do this, we first selected a subset of
the logged anomalies that occurred within the time range
of our measurement data. (Some occurred during the two-
week measurement outage period.) Then, for each candidate
anomaly, we determined anevaluation windowbeginning one
minute prior to the time the event was logged and ending
according to either the event’s duration (if the operators’ log
supplied this information) or three minutes after it began. That
is, for short-lived anomalies, matches were evaluated within a
four minute window. This approach tolerates small time stamp
errors in the operator’s log. It also tolerates some detector
latency, within a window of time ranging from a minimum
of a few minutes to a maximum of the event’s duration as
determined by a network operator.

B. S3 Detector Performance

The right-most column of Table II summarizes the detection
performance of our S3 method indicating 86% success in
identifying the logged anomalies. The application of each
detector was made in one minute steps, thus an anomaly might
be detected within one minute of its inception. While the
S3 detector performed very well, it did not identify several
symmetric anomalies, such as an exchange of HTTP traffic
at a very high rate between a client and server. In each case,
S3 signaled a distortion that we believe will be recognized by
future versions of the detector.

We argued in Section IV that the complementary smooth-
ness and correlation signals in S3 provide an important benefit
over either method in isolation. To highlight the value of
classifying based on both these inputs, we note the following.
The smoothness detector with the 0.82 threshold identified
984 total events in our traffic, and 81 of the 94 logged
anomalies. Likewise, the symmetry detector with the 9e9
threshold identified 507 total events in our traffic and 77 of
the logged anomalies.

Without complete ground truth, we cannot say anything
absolutely definitive about the 345 additional events reported
by the detector that did not appear in the operator’s log. If
it were the case that the additional alarms are all false, the
respective average rates over the 266 day period are 0.67/day
and 1.3/day which are still likely to be acceptable to network
operators.

We visually inspected all of the additional events and made
the following observations. Many were found to be duplicates
of another event due to windowing issues. This can easily
be addressed in future work. Others were large inbound or
outbound spikes in packet rate, and resembled ABUSE events
such as flood-based attacks. Still others were instances in
which traffic dropped to zero, and were likely to be short-lived
NETWORK outage events. Another sort of anomaly reported
by S3 but not found in our operator’s log were prolonged
episodes of packet rates fluctuating more than usual. The root
cause of this phenomenon is unknown, but it is clearly evident
in one instance as an asymmetric event (with an additional 10k
inbound packets per second on average) and in another event
as a symmetric fluctuation in the packet rates.

C. Holt-Winters Time Series-based Detector Performance

To gain perspective on the capabilities of S3, we tested an
alternative detector which has been shown to perform well on
coarser time scale data: the aberrant behavior detection tool
available in RRDtool. This tool is based on Holt-Winters time
series forecasting and identifies anomalous behavior based on
a prediction and a confidence band of varying width, each of
which is influenced by the past values, taking into account both
seasonal (e.g.daily) variations and recent behavior. (Note, that
similar EWMA methods are used to establish ground truth for
other traffic anomaly studiese.g.,[15]) Guided by results from
prior studies, we used this technique on the ingress and egress
packet rate time series.

Our implementation was based on RRDtool version 1.2.12,
but is essentially the same what was used in [4]. Various
modifications to the model parameters were required to handle
our traffic rate data at one second intervals. When con-
structing the RRDtool database, the “HWPREDICT”, “SEA-
SONAL”, “DEVPREDICT”, and “DEVSEASONAL” Round-
Robin Archives (RRAs) were configured by trial and error
with alpha = 0.000385, beta = 0.000012, gamma = 0.000385,
delta = 53, and a seasonal period of 86400, which is one day
expressed in seconds. The “FAILURES” RRA was configured
with a threshold of 45 and a window of 60. This means
that a minimum of 45 violations (observed values outside
the confidence bounds) within a window of 60 seconds was
considered a high-confidence “anomaly”. Theoretically, this
method then has the ability to detect an anomaly within one
minute of its inception. A Holt-Winters reported anomaly
was considered a match to a logged event if the RRDtool
“FAILURES” RRA had a non-zero value any time within the
given event’s evaluation window.

The Holt-Winters (HW) detector found 65% of the candi-
date anomalies from the log as shown in Table II. Overall, the
HW detector reported a total of 270 anomalies in the egress
packet rates and 234 anomalies in the ingress packet rates for
a total of 443 additional alarms (average of 1.7/day). Some of
these are likely to be false positives, but a number of these are
the same suspected ABUSE or NETWORK events that were
identified by S3.

D. Wavelet-based Detector Performance

We also implemented and evaluated the performance of a
Deviation Score (DS) detector. This detector was based on
wavelet decomposition of packet count time series as described
in [5], but configured to detect anomalies at finer time scales.
This general method was also shown to perform very well
in [6].

After trying several different parameters for computing the
deviation scores, we noted that improving the detection rate
without increasing the total hit count was quite difficult. This
behavior is similar in some ways to the smoothness indicator

3We chose a delta value of 5, greater than the values prescribed by [32]
and [4], each of which suggest values between 2 and 3, to reduce the number
of false reports that occurred frequently due to the bursty packet rates observed
when using an interval of one second interval instead of several minutes, as
used in prior work.
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of the S3 method. This is somewhat expected because both
calculations of the smoothness and the deviation scores involve
decomposing the underlying signal into different frequency
components and capturing “strength” of each component at
each time point. However, it is important to point out that
the two have the following differences. First, in the deviation
scores several frequency levels from the wavelet decompo-
sition are combined and normalized while the smoothness
calculation in S3 does not involve such operations. Second,
different time window sizes are used for the calculations of
the “strengths” (local variances) in different components in the
deviation scores while there are no such parameters in the S3
smoothness.

For the purpose of comparison, we computed the devi-
ation scores as follows. Packet streams were decomposed
into 15 frequency levels using the Daubechies 6-tap wavelet
system [30]. Three sets of 5 consecutive frequency levels
were combined into the hi-frequency, mid-frequency, and low-
frequency components. Time windows of sizes 25 seconds,
210 seconds, and 215 seconds were used to compute the
local variances of hi-frequency, mid-frequency, low-frequency
components, respectively. Equal weights were used to compute
the final deviation scores.

Tuning of DS requires simultaneous selection of multiple
parameters. Unfortunately, a comprehensive sweep through the
DS parameter space is impractical. The parameters presented
in this discussion were found by analyzing small samples of
“normal” data as well as a handful of anomalies we expected
all detectors to identify. We used a threshold of 5e-5 on
the deviation scores to detect anomalies. Note this is a huge
change from the original DS threshold of 2.3 reported in [5]
and is due to the difference in the data granularity. The DS
detector identified 63% of the candidate anomalies as shown
in Table II. Overall, the DS detector reported 234 anomalies
in egress packet rates and 413 anomalies in ingress packet
rates for a total of 588 additional events identified (average of
2.2/day). Manual inspection of these indicated that many are
false positives.

E. Results Discussion

In comparing the S3 detector results with those of the HW
and DS detectors, we find that S3 performed better overall
providing an 86% detect rate of the anomalies listed in the
operator’s journal versus 65% for the next best detector with
similar additional alarm rates. Of the journaled anomalies,
most were ABUSE anomalies; S3 detected 93% of these
important events, as opposed to 71% for HW and DS. We
argue that this provides strong support for our hypothesis
that combining smoothness and correlation signals in fine
time scale data leads to meaningful improvement in overall
detection rates.

One reason for HW method’s poorer detection performance
appears to be that, as configured, it quickly adjusted or
displaced its confidence band when a spike occurred and the
increase was sustained for minutes. This made the detector less
sensitive than the S3 detector to subsequent anomalies which
occurred just minutes after another. This would appear to be a

fundamental limitation of this time series-based method when
applied to network traffic at fine time scales.

The number of additional events detected were approxi-
mately the same for S3 and HW. As mentioned above, this was
a function of our threshold selection for each algorithm where
we attempted minimize false negatives and maintain additional
alerts to an average of approximately 1 to 2 per day. However,
DS reported significantly more additional events when tuned
to approximately the same detect rate as HW, raising the suspi-
cion that it is more likely to report false positives. We attribute
this performance problem to DS only having one output signal
that performs similar to the S3 smoothness estimator alone.
Compounding DS’ false positive reports, it produced many
spurious alarms in weeks that contained many real spike-
based anomalies with similar magnitude. We attribute this to
be an artifact of the weekly periodic normalization it employs.
Conversely, we also attribute some of the DS detectors false
negatives to normalization since a large spikes dwarf other
anomalies that occur within the week, reducing their deviation
score. This accounted for a substantial portion of the DS false
negatives. These shortcomings suggest that anomaly detectors
based solely on smoothness measures or that rely on periodic
normalization may be limited in their effectiveness.

F. Online S3 Bayes Performance

Since the evaluation reported above leaves open the question
of whether the reported events were false positives or merely
oversights in the historical operator’s log, we performed an
initial near real time evaluation of S3. Over five days, January
22 through January 26 2007, we ran the S3 Bayes detector
(trained with a subset of the 10 month data set and tuned as
described above), and used its reports to direct an operator’s
attention to anomalous periods of traffic for investigation and
verification.

To perform this evaluation, we used the same measurement
system described in Section III. It was configured to record
72-byte frame headers for all traffic and simultaneously record
the DAG ports’ frame and byte rates at one-second intervals,
more directly than the NeTraMet method used earlier. These
values were stored into a round-robin-database file. During
the test period, the measured link carried an average of 280
megabits per second and about 55,000 frames per second
in each direction. We ran a self-contained analysis script to
generate the smoothness and symmetry values and then apply
the Bayes detector. This script was run continuously over small
batches of data, and could trivially be applied as frequently as
deemed useful by a network operator.

During the Monday through Friday test period, the detector
reported eight events in non-overlapping 15-minute windows.
(Interestingly, this is the same daily event detection rate that
the S3 Bayes reported for the 10 month data set.) Subse-
quent investigation by the network operator found that six of
these eight episodes contained ABUSE anomalies: inbound
or outbound short-lived packet floods or network probes.
The remaining two episodes contained otherwise unnoticed
NETWORK anomalies in which the traffic rate dropped to
zero, for some seconds, in one or both directions on the
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measured link. This evaluation provides further support for the
accuracy (by avoiding false positives) of our method and its
feasibility for continuous use in an operational environment.

VI. CONCLUSIONS ANDFUTURE WORK

In this paper we investigate the problem of traffic anomaly
detection using traffic measurements at fine time scales. We
develop a new detection algorithm for this data that considers
both changes in volume and changes in correlations of ingress
and egress traffic on a link, and raises alerts using a Bayes
Net. We evaluate the capability of our S3 detector on an
extensive time series of traffic rates taken at our campus
border router using a high performance passive measurement
system. Our dataset also includes a log of actual anomalies that
was maintained by our network operations group throughout
the course of our study. While we experimented with longer
intervals, we configured our detector to generate alerts in one
minute intervals that should be quite sufficient for operational
use. In terms of accuracy, the S3 detector was shown to provide
over a 20% improvement on prior methods demonstrating the
value of our new approach.

Our detector also identified a set of events that took place
on short time scales but did not appear in the set of operator
logged anomalies. The configuration of S3 used in this study
reported fewer than two of these events per day over the course
of our study. While we cannot say with certainty whether these
are true anomalies, on closer inspection, most of them bear
the hallmarks of familiar anomalies such as malicious scans
and other types of abuse. A one week case study using a
prototype on-line version of S3 supports this position showing
zero false positive alarms. Regardless of their causes, it is
clear that these events that take place on short time scales
have rich characteristics that warrant future investigation. More
generally, our results demonstrate that anomaly detection with
fine grained data provides a novel and valuable perspective
for network operators. While 20% improvement in detection
accuracy is substantial itself, we consider this a starting point
for further gains that should be possible when combining
fine-grained measurements with our probabilistic reasoning
framework.

While we’ve demonstrated that our S3 detector works well
with time series inputs synthesized from packet and bit rates,
we envision that its Bayes Net performance could be enhanced
by utilizing additional inputs derived from flow counts or
packet header and payload data. We plan to investigate these
possibilities in future work.
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