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Abstract 2 Design

In this paper we presetisdisco - a portable perl script Clearly many time-critical sections of code must be writ-
to discover the characteristics of a file system. We den in C or assembler so that the don't incur the perfor-
scribe its design and report its capabilities and limitagio mance penalty of an interpreter. Perhaps surprisingly, it
as currently implemented. We also present the resultsi®possible to simply integrate C code into a perl script
an empirical study of the Linux ext2 file system. Thesgsing thel nl i ne: : Cmodule[3].I nl i ne: : Cenables
results demonstrate that a portable perl script can pene to embed C functions within a perl script, ixline,
form the necessary fine-grained measures, allowing thved to call them as easily as perl subroutines. While we
programmer to conveniently maintain and reuse measus@n’t expound on the clever mechanism by which this is
ment code. accomplished, figure 1 is an example of perl script con-
taining in-line C code to time a system call.

1 Introduction # usr/bin/perl

use Inline C

Performance evaluation of computer systems can be chal- ny $mi ni num estinate = gettineof day_t e_sltl(_O) ' ond
lenging. To exercise system components and measure ' {303 TRERL TS SR P00 L B LT Seren
their performance, the programmer often resorts to writ- "% 06f seconds el apsed!\n", $mininumestimate);
ing, tweaking, and rewriting customized C or assembler
code snippets. Furthermore, the necessary fine-grained
time measurements might be performed using platform- —(E:ND——
specific methods, such as with the xB@t sc instruc- #include <stdio. h> /» sprintf »/
tion. Unfortunately, this method is not reliable on sys- Hi el ude <oys/time e 1o for getti meof day »
tems with multiple processors, multicore processors, or doubl

: : e oubl e
varlable-(_:lock-rate (power-sz_;wmg) proces_sors[4], SO i getti meof day_test (unsi gned int sl eep_seconds) {
even available on other architectures. This leaves the pro-  struct tingval thhentv, nowt v, el apsedtv;
grammer wanting a more convenient, portable way to ob- gettimeofday(&hentv, (void +)0);

) . - ) if (0 != sleep_seconds) {
tain performance measures. To satisfy this desire, we de- } sl eep(sl eep_seconds) ;

velopedfsdisco. get ti meof day(&nowtv, (void *)0);

fsdisco is a perl script with modes and many options timeval _subtract (&l apsedtv, &nowtv, & hentv);
used to exercise a file system and expose its performance , """ el apsedtv.tv_sec + el apsedtv. tv_usec/ 1000000.;
characteristics. It canor eat () a file and subsequently
perform repeated tests involvingrite(), read(),
andl seek() operations with configurable byte-length, Figure 1: A perl script with in-lined C code
file offset/position, and direction. fsdisco can run com-
mands before and after these tests to remount the pertising | nl i ne: : C thusly, a programmer can extend
nent file system and to gather related measurement infitve perl interpreter to contain measurement functions of
mation, such as memory buffer cache utilization. It aldvs choosing, and call them at will in his scripts.
has options to post-process its measurements, such as disdisco defers reporting output file I/O until after mea-
termining median values, and can output them in a congerements are performed to minimize its affect on a sys-
nient format for further analysis or visualization. tem’s file cache. There is a trade-off between poten-

exit;



tially affecting the measurements with a large measugertable to other architectures or perhaps other C compil-
ment process versus affecting them by doing additioreak.
file 1/0. As a compromise, fsdisco writes its results to files Admittedly, a perl script’s processor and meméme-
between test iterations to keep its process size smallegsrements are greater than that of a single-purpose exe-
as not to consume all physical memory or paging spacetable. To assure measurement correctness, fsdisco care-
fsdisco has an option to summarize results from a setfolly avoids the interpreter’s overhead in the sections of
output files; this is meant to be used after a set of test iteode that time the interesting system calls.
ations have been completed.

Lastly, our tests generally make system calls fry-
gally. This seems a sensible early optimization givg% Method & Results
that the behaviors under study almost certainly vary only
when crossing kilobyte or larger boundaries. Performigl Platform
lengthy sequences of single-byte writes or reads providﬁ%

. . . file system and platform we chose to study is ext2
much more potentially noisy data points, but not more /. "~ % -
. : on Linux= We selected this file system partly because (1)
useful information.

ext2 file system documentation is readily available and (2)
the debugfs command can be used to examine its struc-
2.1 Advantages ture, enabling us to accurately evaluate fsdisco in prepa-
ration for applying it the analysis of less transparent file
The advantages of performing measurements using pgyktems.
or another likewise-extensible scripting language, are pr The specific system under test (SUT) we chose runs
marily convenience and maintainability. With perl anbinux 2.2.18pre21 SMP, has dual Pentium Il 450MHz
I nl'i ne: : C, the C code for measurements is compilegrocessors, and 128MB of memory. The hard drive in-
for you automatically on-the-fly when the script is exevolved in the test is an ATA/EIDE Western Digital Corpo-
cuted, but only when that code changes. This makegation WD136AA drive, 13GB in size, with 2MB cache
convenient to modify tests. and UDMA. The partitioned drive contains a 249MB
Initial analysis, such as calculating the median me8iwap space and nine ext2 file systems. The results de-
surement values of test runs, can also be written in pg¢ribed below were measured on the /tmp file system of
more conveniently than C, coupling the test and analy4i§1 MB in size.
into one self-contained script. The requisite file 1/0 to The WD Caviar WD136AA hard drive has a read seek
report measurements and analysis results can be donéng of 9.5 ms typical, 15 ms maximum, and a write seek
perl. Lastly, fsdisco is portable; it is roughly as portabéme of 11.5 ms typical, 17 ms maximum. However, its
as perl itself. During fsdisco’s development we testedan-board 2MB buffer has the potential to dramatically re-
on the Linux and Apple Mac OS X operating systems dhice read and write measurements.
the x86 and PowerPC architectures, respectively.

3.2 Timers

2.2 Limitations Because the SUT has two processors, timing using the
x86r dt sc instruction could be troublesome. This is be-

Because we have chosen to use only portable systefise the two processors have differing sequences of cycle
calls, .deISCO'S timer granularity is limited to that of the.,,nter values and it's possible that the measurement pro-
gettimeof day() call on the system under test. Begegs could switch processors during it's execution causing
fore performing measurements, fsdisco attempts to de{g§ynter discontinuities and adversely affecting our issul
mineget ti meof day() 's granularity. If it is not able |nstead, our preference is to measure elapsed time by cal-
to measure an interval on the order of microsecondscfiating the interval between calls to the more reliable and

report an error and exits. This could happen due to impk?értable, but less granulaget t i meof day() call.

me_n,tation_restrictions butmay also be_dueto systemloady,  test  the efficacy of using just the
so it's advisable to run fsdisco on a quiescent system. get ti meof day() call for fine-grained time mea-

By experimentation thus far, fsdisco is capable of tingrements, we verified that subtracting the results of a

ing system calls on Unix or Unix-like operating systemget t i meof day() call from a closely subsequent call
However, a programmer attempting to measure the execu-

tion time of individual assembler instructions, would have *fsdisco’s resident set size is typically about 3MB due toptee in-

e : terpreter itself and a dynamically-sized data structusargj test results.
to resort to platform SpeCIfIC teChmqueS’ suchiéssc. 2We also performed some testing of an Apple’s HFS+ file system

|nter95ting|y1 t.hiS_COU|d still be done_ ina per s<_:ript WBiNihat, like ext2, has a variable block size. This measurerngrisdisco
I nline:: C it's just that the resulting script will not beon a PowerPC Mac suggested that its file system’s block size$aa6.




can yield time intervals of just single-digit microseconds To discover the block size of our /tmp file system, we
As such, it should be possible to differentiate betweean fsdisco to write (-w) sequentially to /tmp/file.dat at
access to the hard drive, on the order of millisecondsl2 bytes per write, until the file was 1MB in size, and
and access to kernel memory (cache), presumably on filmeher to do this for 100 iterations (-i 100), unmount-
order of microseconds. By experimentation, we furtharg and remounting /tmp between iterations, and writing
found that it was possible to differentiate between varioaach iteration’s results to a separate output data file (-o
read and write operations of less than ten of microsecondite_%04u.log).

that didn’t involve the disk itself.
# fsdisco -w -i 100 -0 wite_9%4u.l og

3.3 Measuring the File System Subsequently, we ran fsdisco to summarize (-S) the out-
Qut data, selecting the minimum (-W min) write time for

The characteristics discovered are summarized in t&ble _ o
each 512 byte offset (write position).

| Characteristic | Value |

$ fsdisco -S minimumwite.log -Wnmin wite_x.log

Block Size | 1KB, 2KB, or 4KB
Prefetch | approx. 176KB From these results, we found that the SUT’s /tmp ext2
_ FileCache | approx. 80MB file system initially had a block size of 1024 bytes. This
Inode Direct Pointers | 12 value was automatically selected by mkfs, presumably

due to the relatively small size of this file system.
Next, the aforementioned test was performed once

Test ¢ din sinal d that or each possible block size on the /tmp file sys-
ests were performed In sing'e User mode so tha after it was recreated with that size (mkfs.ext2 -b

system was quiescent, both with regard to CPU utiliz 1024.2048.4098. Th It lotted in fi >
tion and file cache. Before the test file (/{tmp/file.dat) wa{asL'L ’ 409P. The resuits are plotted in figure 2.

created, the /tmp file system was reconstructed. The
system was initialized and therefore initially empty, st

Table 1: ext2 File /O Characteristics

a lost+found directory. Thus, the test file would occt SO T T T T T T T T T T T T T T T T T T T T T T T T T TTTTT]
a predictable set of blocks and avoid noise in the bl gzts; P i B Dlockeize = 2KB ke oxta b 2050
access times due to fragmentation. Saof Lol | ! o blocksize = 1KB (mkisex2 - 1024
Also, when run as root, fsdisco remounts the /tmp € .f 1ol | : é E
system between test iterations in an attempt to flush gwé Lii i § g E
file cache. Curiously, this never seemed to cause file« £ | & 1 ey ]
tent to be flushed from all caches. It is our supposit %25§ gl | % . . 8 'E
that the 2MB on-board hard drive buffer was respons 3 *’- i i P! o S
for this effect. To flush all cached content, we founc £ 13{ §i§ g.g §1 §|§ 3I§ §|§ §|§ g_é
necessary to reboot the system rather thanto justrem % § § §:§ 8 % $ 8.8 § ! E
the file system. Of course, this was prohibitively cu  ~ Y8s8a8efefatabadogosagesosatsas:
=S I YO I I

havior because we rarely observed the multi-millisec file offset (write position) mod 16K (modulo 16354)

times indicative of disk accesses. ) ) _
Figure 2: Write latency versus file offset (bytes) mod 16k

3.3.1 Block Size

Our hypothesis was that the ext2 file system blocks sizeNOte the yertical clusters of measured latencies. T_he
would likely be 4096, as it is a common block size. If nohorizontal distance between them exposes the block size,

it would surely be between 512 and 8KB, since those épgstrating that this_ measurement method correctly iden-
the smallest and largest block sizes of which we've heaftiies all three possible ext2 block sizes.

Research on ext2 informed us that it has variable block-

size, but only threepossible block sizes: 1024, 2048332 Prefetch

4096.
o e ottt value with doubt. S 08 B Our hypothesis was that file I/O on the system under test
e repor € preretcn value with some aoubt. See sectia H “ ” _
details. (SUT) is enhanced to prefetch or “read ahead” some num

4actually, there are four ext2 block sizes: 8192 is used orEE ber of blocks in anticipation of continued sequential reads
Alpha platform. We suspect this to be observed when a file is opened and
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also on subsequent reads. However the situation is ¢
plicated; at least two factors could affect prefetch of f
data and our ability to reverse-engineer its behavior:
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1. Under Linux, the hdparm command can set a dri
device-level “read-ahead” feature. On the SUT, re:
ahead is enabled for the pertinent drive and is at
default value of 8 sectors (4KB). However, since tl
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we did not find a concise description of prefetch in

the ext2 file system. Figure 3: Backward read latency after initial 2MB read

Because we've eliminated fragmentation by rebuilding
the file system before testing and because ext2 tries to ar-
range files in contiguous sets of blocks, we expect to dhvo trials, but we do not have high confidence that this is
serve at least a 4KB “prefetch” effect. attributed to, and only to, an ext2 prefetch mechanism.

To determine the SUT's prefetch behavior, we first ran Also, in figure 3 the reads at higher file offsets, just
fsdisco to create a 3MB file. This file size was chosabove that 176KB region, show higher latency at 4KB in-
because it is larger than the hard drive’s buffer, but alservals even though the file system'’s block size was 1KB.
small enough not to exhaust the SUT's file cache. The fillis phenomenomight be attributed to the drive device’s
system’s block size was 1024 at the time of this test, wenfigured read-ahead size of 4KB or some kernel I/O
chose to measure appropriately granular 512-byte seklyger that operates on 4KB objects regardless of block
and reads. size.

To further explore prefetch behavior, we rebooted (to
flush the drive’s buffer) and ran fsdisco for 256 iterations

As noted above, the SUT has a drive with an on-boafdth an initial read size of 2MB but had it decrement the
2MB buffer and we do not know exactly when and hotitial read size by 4096 on each subsequent iteration. In
this buffer is populated. Even if the drive itself doesn§2ch iteration we had fsdisco subsequently wait one sec-
prefetch and just populates its buffer on reads and writ€8d (for prefetching) and then read the file backwards as
our analysis should avoid being mislead by this drivégfore.
buffering. We rebooted the system before the following 4 fsdisco -1 2097152 -L 4096 -D 1 -r -b \
read test was performed to be sure both Linux’ file cache -1 256 -o backward_%04u. | og
and the drives buffer were initialized to empty.

Then we used fsdisco to read an initial portion of the We then post-processed the measurement log files to
file (-1 2MB) and then wait five seconds; this is to “primefind the extent of the prefetched region as a function of
the prefetch behavior, in case an initial sequential readfig initial read size. The results of this prefetch analysis
necessary to activate it. This particular value was chosg® shown in figure 4. We did find evidence of the 176
so that it might fill the drive’s buffer as well. fsdisco themiB prefetch region seen in figure 3. Unfortunately, we
read the filebackward in 1024 byte increments, with thehave no satisfying explanation of overall behavior. Our
hope of discovering how much of the file past that initiguess is that there is a complicated interaction between the

$ fsdisco -w -s 3145728 # -s 3MB

2MB portion might have been prefetched. system prefetch and the hard drive buffering that hinders
# fsdisco -1 2097152 -D 5 -1 -b -0 backward. | og our aplllty to easily reverse-engineer the SUT's prefetch
behavior.

The resulting read latencies are shown in figure 3. O -
the read position got within 176KB of the 2MB initial rearcbi(;%'3 File Cache

zone (which is presumably cached), the read times w&ar prior experience was that Linux allows its file cache
identical to those below 2MB. This is a strong indicatioto occupy all memory that would otherwise be unused.
that 176KB of additional file content was cached, posdihe SUT has 128MB of memory of which the free and top
bly due to file system prefetch. This was reproduced @@mmands report 119MB free immediately after booting
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Figure 4: Prefetch extent versus initial “priming” readssizFigure 5: Forward read latency after caching by reading
file “backwards”

into single-user mode. Thus, our hypothesis is that the

SUT will cache nearly 119MB of a 128MB file when alinode is about ten. So, a test involving a file of less than

its blocks are accessed. 100 blocks should be sufficient. During this test the /tmp
Attempting to discover the size of the file cache, wide system had been created with a 1KB block size.

first ran fsdisco to write a file named /tmpffile.dat of the To discover the number of data blocks that can be

same size as the SUT’s physical memory (128MB).  referenced directly from the inode, we ran fsdisco to
write (-w) whole blocks of data (-m 1024) sequentially

to /tmp/file.dat until the file was 64KB in size, and to do
After a reboot into single-user mode, we ran fsdisco {8S for 100 iterations, unmounting and remounting /tmp

read the filebackwards from end to beginning, as a Seriegetwe_en iterations and writing results to separate output
of 1MB blocks of data. This action is meant to populafé@t@ files.

the system’s file cache and overwhelmit, leaving the lead- # fsdisco -w -s 65536 -m 1024 -i 100 \

ing part of the file cached since it was most recently read. -°© Wite_64_bl ocks_%4u.1og

We ran ten iterations for good measure, in case the SyStergubsequently,
prefers to cache oft-referenced blocks.

$ fsdisco -w-s 134217728 -m 1048576 # -s 128MB

we ran fsdisco to summarize (-S) the out-
put data, selecting the median (-W med) time for each
$ fsdisco -i 10 -r -b -m 1048576 # -m 1NB block-sized write.

. 3 f sdi -m 1024 -S nedi ite.l -Wned \
Subsequently, we ran fsdisco to read the fileward S ) et (o an e Tog -

from beginning to end, as a series of 1MB blocks of data.

We anticipate a jump in latency at the file offset at which The results are plotted in figure 6. Recall that the block

it is necessary to access the drive to retrieve uncached file : . )
content y size here is 1024 and note the spike in write latency at the

13th data block. This strongly suggests that the first 12
$ fsdisco -r -m 1048576 -0 forward. | og blocks of data are referenced directly in the inode but that

. ) writing the 13th block of data required the allocation of

As expected, the file was read much more quickly thispiock for indirect pointers first, and then block for the

time since a portion of the file was cached on prior reaqgy, jtself (referenced indirectly) resulting in aboutdevi
Figure 5 shows the clear result. The marked increaseyig \yrite time for that 13th block of data. we used debugfs
read latency at about 80MB into the file strongly suggestsyerify that it is indeed the case that the 13th allocated

that 80MB of this file resided in file cache. Thus 80MBoc is used for indirect pointers, for a total of 65 1024-
is our rough estimate of file cache memory that was avaélyte blocks used to represent the 64KB file:

able to cache this file.
# debugfs -R 'stat file.dat’ /dev/hda8
BLOCKS:
. (0-11):275-286, (IND):287, (12-63):288-339
3.3.4 Inode Pointers TOTAL: 65

Having read [1] prior to testing, we had a rough idea thatIn figure 6 also note that that the subsequent write times
the number of data blocks referenced directly from a filejgere all shorter, presumably owing to the fact that they
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T ook writ latency. median of 1‘00‘1,;# simonious manner with respect to the number of system
1o locky 1 calls per test. Donald Knuth is quoted as having said,
“Premature optimization is the root of all programming
evil.” In this case it was, at least, the root of some unnec-
essary effort.
fsdisc@ demonstrates that it is feasible to use a con-
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i |_| |' venient interpreted scripting language such as perl, albei
10l - with extensions written in C, to write and maintain cus-
I : i 1 tomized tests that effectively measure operating system
i i performance.
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Figure 6: Write latency versus file offset
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detect this speed increase when reading across an empty
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Also, time and space did not permit a complete report
of measurements of the HFS+ file system. That work is a
simple matter of using the “recipe” of fsdisco commands
in section 3.

5 Conclusion

We have shown that the performance of file systems
can be measured to single-digit microseconds using the
portableget t i neof day() timing facility.
We've learned that it is quite difficult to construct a
general tool to perform many specific measurements; fs-
disco’s myriad command-line options and modes testify
to the complication. Furthermore, we were perhaps Un-sigisco is available at:
necessarily frugal by performing measurements in a par+ p: / / net . doi t . wi sc. edu/ ~pl onka/ f sdi sco/




