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Abstract

In this paper we presentfsdisco - a portable perl script
to discover the characteristics of a file system. We de-
scribe its design and report its capabilities and limitations,
as currently implemented. We also present the results of
an empirical study of the Linux ext2 file system. These
results demonstrate that a portable perl script can per-
form the necessary fine-grained measures, allowing the
programmer to conveniently maintain and reuse measure-
ment code.

1 Introduction

Performance evaluation of computer systems can be chal-
lenging. To exercise system components and measure
their performance, the programmer often resorts to writ-
ing, tweaking, and rewriting customized C or assembler
code snippets. Furthermore, the necessary fine-grained
time measurements might be performed using platform-
specific methods, such as with the x86rdtsc instruc-
tion. Unfortunately, this method is not reliable on sys-
tems with multiple processors, multicore processors, or
variable-clock-rate (power-saving) processors[4], nor is it
even available on other architectures. This leaves the pro-
grammer wanting a more convenient, portable way to ob-
tain performance measures. To satisfy this desire, we de-
velopedfsdisco.

fsdisco is a perl script with modes and many options
used to exercise a file system and expose its performance
characteristics. It cancreat() a file and subsequently
perform repeated tests involvingwrite(), read(),
andlseek() operations with configurable byte-length,
file offset/position, and direction. fsdisco can run com-
mands before and after these tests to remount the perti-
nent file system and to gather related measurement infor-
mation, such as memory buffer cache utilization. It also
has options to post-process its measurements, such as de-
termining median values, and can output them in a conve-
nient format for further analysis or visualization.

2 Design

Clearly many time-critical sections of code must be writ-
ten in C or assembler so that the don’t incur the perfor-
mance penalty of an interpreter. Perhaps surprisingly, it
is possible to simply integrate C code into a perl script
using theInline::C module[3].Inline::C enables
one to embed C functions within a perl script, i.e.in-line,
and to call them as easily as perl subroutines. While we
won’t expound on the clever mechanism by which this is
accomplished, figure 1 is an example of perl script con-
taining in-line C code to time a system call.

#! /usr/bin/perl
use Inline C;

my $minimum_estimate = gettimeofday_test(0);
if ($minimum_estimate >= .001) { # 1 millisecond

die sprintf("minimum delta time too big: " .
"%.06f seconds elapsed!\n", $minimum_estimate);

}
exit;

__END__
__C__
#include <stdio.h> /* sprintf */
#include <unistd.h> /* sleep */
#include <sys/time.h> /* for gettimeofday */

double
gettimeofday_test(unsigned int sleep_seconds) {

struct timeval thentv, nowtv, elapsedtv;
gettimeofday(&thentv, (void *)0);
if (0 != sleep_seconds) {

sleep(sleep_seconds);
}
gettimeofday(&nowtv, (void *)0);
timeval_subtract(&elapsedtv, &nowtv, &thentv);
return elapsedtv.tv_sec + elapsedtv.tv_usec/1000000.;

}

Figure 1: A perl script with in-lined C code

UsingInline::C thusly, a programmer can extend
the perl interpreter to contain measurement functions of
his choosing, and call them at will in his scripts.

fsdisco defers reporting output file I/O until after mea-
surements are performed to minimize its affect on a sys-
tem’s file cache. There is a trade-off between poten-
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tially affecting the measurements with a large measure-
ment process versus affecting them by doing additional
file I/O. As a compromise, fsdisco writes its results to files
between test iterations to keep its process size smaller so
as not to consume all physical memory or paging space.
fsdisco has an option to summarize results from a set of
output files; this is meant to be used after a set of test iter-
ations have been completed.

Lastly, our tests generally make system calls fru-
gally. This seems a sensible early optimization given
that the behaviors under study almost certainly vary only
when crossing kilobyte or larger boundaries. Performing
lengthy sequences of single-byte writes or reads provides
much more potentially noisy data points, but not more
useful information.

2.1 Advantages

The advantages of performing measurements using perl,
or another likewise-extensible scripting language, are pri-
marily convenience and maintainability. With perl and
Inline::C, the C code for measurements is compiled
for you automatically on-the-fly when the script is exe-
cuted, but only when that code changes. This makes it
convenient to modify tests.

Initial analysis, such as calculating the median mea-
surement values of test runs, can also be written in perl
more conveniently than C, coupling the test and analysis
into one self-contained script. The requisite file I/O to
report measurements and analysis results can be done in
perl. Lastly, fsdisco is portable; it is roughly as portable
as perl itself. During fsdisco’s development we tested it
on the Linux and Apple Mac OS X operating systems on
the x86 and PowerPC architectures, respectively.

2.2 Limitations

Because we have chosen to use only portable system
calls, fsdisco’s timer granularity is limited to that of the
gettimeofday() call on the system under test. Be-
fore performing measurements, fsdisco attempts to deter-
minegettimeofday()’s granularity. If it is not able
to measure an interval on the order of microseconds, it
report an error and exits. This could happen due to imple-
mentation restrictions but may also be due to system load,
so it’s advisable to run fsdisco on a quiescent system.

By experimentation thus far, fsdisco is capable of tim-
ing system calls on Unix or Unix-like operating systems.
However, a programmer attempting to measure the execu-
tion time of individual assembler instructions, would have
to resort to platform specific techniques, such asrdtsc.
Interestingly, this could still be done in a perl script using
Inline::C; it’s just that the resulting script will not be

portable to other architectures or perhaps other C compil-
ers.

Admittedly, a perl script’s processor and memory1 re-
quirements are greater than that of a single-purpose exe-
cutable. To assure measurement correctness, fsdisco care-
fully avoids the interpreter’s overhead in the sections of
code that time the interesting system calls.

3 Method & Results

3.1 Platform

The file system and platform we chose to study is ext2
on Linux.2 We selected this file system partly because (1)
ext2 file system documentation is readily available and (2)
the debugfs command can be used to examine its struc-
ture, enabling us to accurately evaluate fsdisco in prepa-
ration for applying it the analysis of less transparent file
systems.

The specific system under test (SUT) we chose runs
Linux 2.2.18pre21 SMP, has dual Pentium III 450MHz
processors, and 128MB of memory. The hard drive in-
volved in the test is an ATA/EIDE Western Digital Corpo-
ration WD136AA drive, 13GB in size, with 2MB cache
and UDMA. The partitioned drive contains a 249MB
swap space and nine ext2 file systems. The results de-
scribed below were measured on the /tmp file system of
471 MB in size.

The WD Caviar WD136AA hard drive has a read seek
time of 9.5 ms typical, 15 ms maximum, and a write seek
time of 11.5 ms typical, 17 ms maximum. However, its
on-board 2MB buffer has the potential to dramatically re-
duce read and write measurements.

3.2 Timers

Because the SUT has two processors, timing using the
x86rdtsc instruction could be troublesome. This is be-
cause the two processors have differing sequences of cycle
counter values and it’s possible that the measurement pro-
cess could switch processors during it’s execution causing
counter discontinuities and adversely affecting our results.
Instead, our preference is to measure elapsed time by cal-
culating the interval between calls to the more reliable and
portable, but less granular,gettimeofday() call.

To test the efficacy of using just the
gettimeofday() call for fine-grained time mea-
surements, we verified that subtracting the results of a
gettimeofday() call from a closely subsequent call

1fsdisco’s resident set size is typically about 3MB due to theperl in-
terpreter itself and a dynamically-sized data structure storing test results.

2We also performed some testing of an Apple’s HFS+ file system
that, like ext2, has a variable block size. This measurementby fsdisco
on a PowerPC Mac suggested that its file system’s block size was 4096.
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can yield time intervals of just single-digit microseconds.
As such, it should be possible to differentiate between
access to the hard drive, on the order of milliseconds,
and access to kernel memory (cache), presumably on the
order of microseconds. By experimentation, we further
found that it was possible to differentiate between various
read and write operations of less than ten of microseconds
that didn’t involve the disk itself.

3.3 Measuring the File System

The characteristics discovered are summarized in table 13.

Characteristic Value
Block Size 1KB, 2KB, or 4KB

Prefetch approx. 176KB
File Cache approx. 80MB

Inode Direct Pointers 12

Table 1: ext2 File I/O Characteristics

Tests were performed in single user mode so that the
system was quiescent, both with regard to CPU utiliza-
tion and file cache. Before the test file (/tmp/file.dat) was
created, the /tmp file system was reconstructed. The file
system was initialized and therefore initially empty, save
a lost+found directory. Thus, the test file would occupy
a predictable set of blocks and avoid noise in the block
access times due to fragmentation.

Also, when run as root, fsdisco remounts the /tmp file
system between test iterations in an attempt to flush the
file cache. Curiously, this never seemed to cause file con-
tent to be flushed from all caches. It is our supposition
that the 2MB on-board hard drive buffer was responsible
for this effect. To flush all cached content, we found it
necessary to reboot the system rather than to just remount
the file system. Of course, this was prohibitively cum-
bersome and slow, so in many cases we used microsec-
ond scale differences in measurement times to deduce be-
havior because we rarely observed the multi-millisecond
times indicative of disk accesses.

3.3.1 Block Size

Our hypothesis was that the ext2 file system blocks size
would likely be 4096, as it is a common block size. If not,
it would surely be between 512 and 8KB, since those are
the smallest and largest block sizes of which we’ve heard.
Research on ext2 informed us that it has variable block-
size, but only three4 possible block sizes: 1024, 2048,
4096.

3We report the prefetch value with some doubt. See section 3.3.2 for
details.

4Actually, there are four ext2 block sizes: 8192 is used on theDEC
Alpha platform.

To discover the block size of our /tmp file system, we
ran fsdisco to write (-w) sequentially to /tmp/file.dat at
512 bytes per write, until the file was 1MB in size, and
further to do this for 100 iterations (-i 100), unmount-
ing and remounting /tmp between iterations, and writing
each iteration’s results to a separate output data file (-o
write %04u.log).

# fsdisco -w -i 100 -o write_%04u.log

Subsequently, we ran fsdisco to summarize (-S) the out-
put data, selecting the minimum (-W min) write time for
each 512 byte offset (write position).

$ fsdisco -S minimum_write.log -W min write_*.log

From these results, we found that the SUT’s /tmp ext2
file system initially had a block size of 1024 bytes. This
value was automatically selected by mkfs, presumably
due to the relatively small size of this file system.

Next, the aforementioned test was performed once
for each possible block size on the /tmp file sys-
tem after it was recreated with that size (mkfs.ext2 -b
{1024,2048,4096}). The results are plotted in figure 2.
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Figure 2: Write latency versus file offset (bytes) mod 16k

Note the vertical clusters of measured latencies. The
horizontal distance between them exposes the block size,
illustrating that this measurement method correctly iden-
tifies all three possible ext2 block sizes.

3.3.2 Prefetch

Our hypothesis was that file I/O on the system under test
(SUT) is enhanced to prefetch or “read ahead” some num-
ber of blocks in anticipation of continued sequential reads.
We suspect this to be observed when a file is opened and
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also on subsequent reads. However the situation is com-
plicated; at least two factors could affect prefetch of file
data and our ability to reverse-engineer its behavior:

1. Under Linux, the hdparm command can set a drive
device-level “read-ahead” feature. On the SUT, read-
ahead is enabled for the pertinent drive and is at it’s
default value of 8 sectors (4KB). However, since the
device is not aware of a file’s block structure, it will
simply read subsequent, contiguous sectors.

2. It is likely that the ext2 implementation itself has some
sort of prefetch feature. Although we made a con-
certed effort to research this on the world wide web,
we did not find a concise description of prefetch in
the ext2 file system.

Because we’ve eliminated fragmentation by rebuilding
the file system before testing and because ext2 tries to ar-
range files in contiguous sets of blocks, we expect to ob-
serve at least a 4KB “prefetch” effect.

To determine the SUT’s prefetch behavior, we first ran
fsdisco to create a 3MB file. This file size was chosen
because it is larger than the hard drive’s buffer, but also
small enough not to exhaust the SUT’s file cache. The file
system’s block size was 1024 at the time of this test, we
chose to measure appropriately granular 512-byte seeks
and reads.

$ fsdisco -w -s 3145728 # -s 3MB

As noted above, the SUT has a drive with an on-board
2MB buffer and we do not know exactly when and how
this buffer is populated. Even if the drive itself doesn’t
prefetch and just populates its buffer on reads and writes,
our analysis should avoid being mislead by this driver
buffering. We rebooted the system before the following
read test was performed to be sure both Linux’ file cache
and the drives buffer were initialized to empty.

Then we used fsdisco to read an initial portion of the
file (-I 2MB) and then wait five seconds; this is to “prime”
the prefetch behavior, in case an initial sequential read is
necessary to activate it. This particular value was chosen
so that it might fill the drive’s buffer as well. fsdisco then
read the filebackward in 1024 byte increments, with the
hope of discovering how much of the file past that initial
2MB portion might have been prefetched.

# fsdisco -I 2097152 -D 5 -r -b -o backward.log

The resulting read latencies are shown in figure 3. Once
the read position got within 176KB of the 2MB initial read
zone (which is presumably cached), the read times were
identical to those below 2MB. This is a strong indication
that 176KB of additional file content was cached, possi-
bly due to file system prefetch. This was reproduced in

20
31

61
6

20
48

00
0

20
64

38
4

20
80

76
8

2M
21

13
53

6
21

29
92

0
21

46
30

4
21

62
68

8
21

79
07

2
21

95
45

6
22

11
84

0
22

28
22

4
22

44
60

8
22

60
99

2
22

77
37

6
22

93
76

0
23

10
14

4
23

26
52

8
23

42
91

2

file read position (offset) in bytes

0

50

100

150

200

250

300

350

ls
ee

k+
re

ad
 ti

m
e 

(la
te

nc
y)

 in
 m

ic
ro

se
co

nd
s

time for 512 byte lseek (backwards) + read, following initial 2MB read

176KB

Figure 3: Backward read latency after initial 2MB read

two trials, but we do not have high confidence that this is
attributed to, and only to, an ext2 prefetch mechanism.

Also, in figure 3 the reads at higher file offsets, just
above that 176KB region, show higher latency at 4KB in-
tervals even though the file system’s block size was 1KB.
This phenomenonmight be attributed to the drive device’s
configured read-ahead size of 4KB or some kernel I/O
layer that operates on 4KB objects regardless of block
size.

To further explore prefetch behavior, we rebooted (to
flush the drive’s buffer) and ran fsdisco for 256 iterations
with an initial read size of 2MB but had it decrement the
initial read size by 4096 on each subsequent iteration. In
each iteration we had fsdisco subsequently wait one sec-
ond (for prefetching) and then read the file backwards as
before.

# fsdisco -I 2097152 -L 4096 -D 1 -r -b \
-i 256 -o backward_%04u.log

We then post-processed the measurement log files to
find the extent of the prefetched region as a function of
the initial read size. The results of this prefetch analysis
are shown in figure 4. We did find evidence of the 176
MB prefetch region seen in figure 3. Unfortunately, we
have no satisfying explanation of overall behavior. Our
guess is that there is a complicated interaction between the
system prefetch and the hard drive buffering that hinders
our ability to easily reverse-engineer the SUT’s prefetch
behavior.

3.3.3 File Cache

Our prior experience was that Linux allows its file cache
to occupy all memory that would otherwise be unused.
The SUT has 128MB of memory of which the free and top
commands report 119MB free immediately after booting
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Figure 4: Prefetch extent versus initial “priming” read size

into single-user mode. Thus, our hypothesis is that the
SUT will cache nearly 119MB of a 128MB file when all
its blocks are accessed.

Attempting to discover the size of the file cache, we
first ran fsdisco to write a file named /tmp/file.dat of the
same size as the SUT’s physical memory (128MB).

$ fsdisco -w -s 134217728 -m 1048576 # -s 128MB

After a reboot into single-user mode, we ran fsdisco to
read the filebackwards from end to beginning, as a series
of 1MB blocks of data. This action is meant to populate
the system’s file cache and overwhelm it, leaving the lead-
ing part of the file cached since it was most recently read.
We ran ten iterations for good measure, in case the system
prefers to cache oft-referenced blocks.

$ fsdisco -i 10 -r -b -m 1048576 # -m 1MB

Subsequently, we ran fsdisco to read the fileforward
from beginning to end, as a series of 1MB blocks of data.
We anticipate a jump in latency at the file offset at which
it is necessary to access the drive to retrieve uncached file
content.

$ fsdisco -r -m 1048576 -o forward.log

As expected, the file was read much more quickly this
time since a portion of the file was cached on prior reads.
Figure 5 shows the clear result. The marked increase in
read latency at about 80MB into the file strongly suggests
that 80MB of this file resided in file cache. Thus 80MB
is our rough estimate of file cache memory that was avail-
able to cache this file.

3.3.4 Inode Pointers

Having read [1] prior to testing, we had a rough idea that
the number of data blocks referenced directly from a file’s
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Figure 5: Forward read latency after caching by reading
file “backwards”

inode is about ten. So, a test involving a file of less than
100 blocks should be sufficient. During this test the /tmp
file system had been created with a 1KB block size.

To discover the number of data blocks that can be
referenced directly from the inode, we ran fsdisco to
write (-w) whole blocks of data (-m 1024) sequentially
to /tmp/file.dat until the file was 64KB in size, and to do
this for 100 iterations, unmounting and remounting /tmp
between iterations and writing results to separate output
data files.

# fsdisco -w -s 65536 -m 1024 -i 100 \
-o write_64_blocks_%04u.log

Subsequently, we ran fsdisco to summarize (-S) the out-
put data, selecting the median (-W med) time for each
block-sized write.

$ fsdisco -m 1024 -S median_write.log -W med \
write_64_blocks_*.log

The results are plotted in figure 6. Recall that the block
size here is 1024 and note the spike in write latency at the
13th data block. This strongly suggests that the first 12
blocks of data are referenced directly in the inode but that
writing the 13th block of data required the allocation of
a block for indirect pointers first, and then block for the
data itself (referenced indirectly) resulting in about twice
the write time for that 13th block of data. we used debugfs
to verify that it is indeed the case that the 13th allocated
block is used for indirect pointers, for a total of 65 1024-
byte blocks used to represent the 64KB file:

# debugfs -R ’stat file.dat’ /dev/hda8
BLOCKS:
(0-11):275-286, (IND):287, (12-63):288-339
TOTAL: 65

In figure 6 also note that that the subsequent write times
were all shorter, presumably owing to the fact that they
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Figure 6: Write latency versus file offset

did not require the allocation of another block for indirect
pointers since the one block of indirect pointers was suffi-
cient to represent this 64KB file. This also suggests that,
in cache, the indirection itself does not significantly add to
the latency, but rather just the allocation and initialization
of the indirect pointer block causes a noticeable delay.

4 Future Work

While experimenting with sparse files created by
lseek()ing past one or more blocks and then writing to
subsequent blocks, we discovered that it is slightly faster
to read empty blocks. This phenomenon could poten-
tially be exploited to more efficiently divine a file sys-
tem’s block size. For instance, given that ext2 has only
four valid block sizes, we believe it would be possible
to quickly determine the block size using very few calls
to lseek(), write(), andread() by attempting to
detect this speed increase when reading across an empty
block of one of those candidate sizes.

Also, time and space did not permit a complete report
of measurements of the HFS+ file system. That work is a
simple matter of using the “recipe” of fsdisco commands
in section 3.

5 Conclusion

We have shown that the performance of file systems
can be measured to single-digit microseconds using the
portablegettimeofday() timing facility.

We’ve learned that it is quite difficult to construct a
general tool to perform many specific measurements; fs-
disco’s myriad command-line options and modes testify
to the complication. Furthermore, we were perhaps un-
necessarily frugal by performing measurements in a par-

simonious manner with respect to the number of system
calls per test. Donald Knuth is quoted as having said,
“Premature optimization is the root of all programming
evil.” In this case it was, at least, the root of some unnec-
essary effort.

fsdisco5 demonstrates that it is feasible to use a con-
venient interpreted scripting language such as perl, albeit
with extensions written in C, to write and maintain cus-
tomized tests that effectively measure operating system
performance.
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